Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -28,7 +28,7 @@ MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
|
| 28 |
|
| 29 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 30 |
|
| 31 |
-
# Load
|
| 32 |
MODEL_ID_M = "reducto/RolmOCR"
|
| 33 |
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
|
| 34 |
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
|
@@ -37,7 +37,7 @@ model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
|
| 37 |
torch_dtype=torch.float16
|
| 38 |
).to(device).eval()
|
| 39 |
|
| 40 |
-
# Load
|
| 41 |
MODEL_ID_X = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
|
| 42 |
processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True)
|
| 43 |
model_x = Qwen2VLForConditionalGeneration.from_pretrained(
|
|
@@ -46,16 +46,7 @@ model_x = Qwen2VLForConditionalGeneration.from_pretrained(
|
|
| 46 |
torch_dtype=torch.float16
|
| 47 |
).to(device).eval()
|
| 48 |
|
| 49 |
-
# Load
|
| 50 |
-
MODEL_ID_Z = "lingshu-medical-mllm/Lingshu-7B"
|
| 51 |
-
processor_z = AutoProcessor.from_pretrained(MODEL_ID_Z, trust_remote_code=True)
|
| 52 |
-
model_z = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 53 |
-
MODEL_ID_Z,
|
| 54 |
-
trust_remote_code=True,
|
| 55 |
-
torch_dtype=torch.float16
|
| 56 |
-
).to(device).eval()
|
| 57 |
-
|
| 58 |
-
# Load visionOCR
|
| 59 |
MODEL_ID_V = "nanonets/Nanonets-OCR-s"
|
| 60 |
processor_v = AutoProcessor.from_pretrained(MODEL_ID_V, trust_remote_code=True)
|
| 61 |
model_v = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
|
@@ -101,9 +92,6 @@ def generate_image(model_name: str, text: str, image: Image.Image,
|
|
| 101 |
elif model_name == "Qwen2-VL-OCR-2B-Instruct":
|
| 102 |
processor = processor_x
|
| 103 |
model = model_x
|
| 104 |
-
elif model_name == "Lingshu-7B":
|
| 105 |
-
processor = processor_z
|
| 106 |
-
model = model_z
|
| 107 |
elif model_name == "Nanonets-OCR-s":
|
| 108 |
processor = processor_v
|
| 109 |
model = model_v
|
|
@@ -157,9 +145,6 @@ def generate_video(model_name: str, text: str, video_path: str,
|
|
| 157 |
elif model_name == "Qwen2-VL-OCR-2B-Instruct":
|
| 158 |
processor = processor_x
|
| 159 |
model = model_x
|
| 160 |
-
elif model_name == "Lingshu-7B":
|
| 161 |
-
processor = processor_z
|
| 162 |
-
model = model_z
|
| 163 |
elif model_name == "Nanonets-OCR-s":
|
| 164 |
processor = processor_v
|
| 165 |
model = model_v
|
|
@@ -215,7 +200,6 @@ image_examples = [
|
|
| 215 |
]
|
| 216 |
|
| 217 |
video_examples = [
|
| 218 |
-
["Explain the watch ad in detail.", "videos/1.mp4"],
|
| 219 |
["Identify the main actions in the cartoon video", "videos/2.mp4"]
|
| 220 |
]
|
| 221 |
|
|
@@ -260,16 +244,15 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
| 260 |
with gr.Column():
|
| 261 |
output = gr.Textbox(label="Output", interactive=False, lines=2, scale=2)
|
| 262 |
model_choice = gr.Radio(
|
| 263 |
-
choices=["Nanonets-OCR-s", "Qwen2-VL-OCR-2B-Instruct", "RolmOCR"
|
| 264 |
label="Select Model",
|
| 265 |
-
value="
|
| 266 |
)
|
| 267 |
|
| 268 |
gr.Markdown("**Model Info**")
|
| 269 |
gr.Markdown("⤷ [Nanonets-OCR-s](https://huggingface.co/nanonets/Nanonets-OCR-s): nanonets-ocr-s is a powerful, state-of-the-art image-to-markdown ocr model that goes far beyond traditional text extraction. it transforms documents into structured markdown with intelligent content recognition and semantic tagging.")
|
| 270 |
gr.Markdown("⤷ [Qwen2-VL-OCR-2B-Instruct](https://huggingface.co/prithivMLmods/Qwen2-VL-OCR-2B-Instruct): qwen2-vl-ocr-2b-instruct model is a fine-tuned version of qwen2-vl-2b-instruct, tailored for tasks that involve <messy> optical character recognition (ocr), image-to-text conversion, and math problem solving with latex formatting.")
|
| 271 |
gr.Markdown("⤷ [RolmOCR](https://huggingface.co/reducto/RolmOCR): rolmocr, high-quality, openly available approach to parsing pdfs and other complex documents oprical character recognition. it is designed to handle a wide range of document types, including scanned documents, handwritten text, and complex layouts.")
|
| 272 |
-
gr.Markdown("⤷ [Lingshu-7B](https://huggingface.co/lingshu-medical-mllm/Lingshu-7B): lingshu-7b is a generalist foundation model for unified multimodal medical understanding and reasoning, virtual assistants, and content generation.")
|
| 273 |
|
| 274 |
image_submit.click(
|
| 275 |
fn=generate_image,
|
|
|
|
| 28 |
|
| 29 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 30 |
|
| 31 |
+
# Load RolmOCR
|
| 32 |
MODEL_ID_M = "reducto/RolmOCR"
|
| 33 |
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
|
| 34 |
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
|
|
|
| 37 |
torch_dtype=torch.float16
|
| 38 |
).to(device).eval()
|
| 39 |
|
| 40 |
+
# Load Qwen2-VL-OCR-2B-Instruct
|
| 41 |
MODEL_ID_X = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
|
| 42 |
processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True)
|
| 43 |
model_x = Qwen2VLForConditionalGeneration.from_pretrained(
|
|
|
|
| 46 |
torch_dtype=torch.float16
|
| 47 |
).to(device).eval()
|
| 48 |
|
| 49 |
+
# Load Nanonets-OCR-s
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
MODEL_ID_V = "nanonets/Nanonets-OCR-s"
|
| 51 |
processor_v = AutoProcessor.from_pretrained(MODEL_ID_V, trust_remote_code=True)
|
| 52 |
model_v = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
|
|
|
| 92 |
elif model_name == "Qwen2-VL-OCR-2B-Instruct":
|
| 93 |
processor = processor_x
|
| 94 |
model = model_x
|
|
|
|
|
|
|
|
|
|
| 95 |
elif model_name == "Nanonets-OCR-s":
|
| 96 |
processor = processor_v
|
| 97 |
model = model_v
|
|
|
|
| 145 |
elif model_name == "Qwen2-VL-OCR-2B-Instruct":
|
| 146 |
processor = processor_x
|
| 147 |
model = model_x
|
|
|
|
|
|
|
|
|
|
| 148 |
elif model_name == "Nanonets-OCR-s":
|
| 149 |
processor = processor_v
|
| 150 |
model = model_v
|
|
|
|
| 200 |
]
|
| 201 |
|
| 202 |
video_examples = [
|
|
|
|
| 203 |
["Identify the main actions in the cartoon video", "videos/2.mp4"]
|
| 204 |
]
|
| 205 |
|
|
|
|
| 244 |
with gr.Column():
|
| 245 |
output = gr.Textbox(label="Output", interactive=False, lines=2, scale=2)
|
| 246 |
model_choice = gr.Radio(
|
| 247 |
+
choices=["Nanonets-OCR-s", "Qwen2-VL-OCR-2B-Instruct", "RolmOCR"],
|
| 248 |
label="Select Model",
|
| 249 |
+
value="Nanonets-OCR-s"
|
| 250 |
)
|
| 251 |
|
| 252 |
gr.Markdown("**Model Info**")
|
| 253 |
gr.Markdown("⤷ [Nanonets-OCR-s](https://huggingface.co/nanonets/Nanonets-OCR-s): nanonets-ocr-s is a powerful, state-of-the-art image-to-markdown ocr model that goes far beyond traditional text extraction. it transforms documents into structured markdown with intelligent content recognition and semantic tagging.")
|
| 254 |
gr.Markdown("⤷ [Qwen2-VL-OCR-2B-Instruct](https://huggingface.co/prithivMLmods/Qwen2-VL-OCR-2B-Instruct): qwen2-vl-ocr-2b-instruct model is a fine-tuned version of qwen2-vl-2b-instruct, tailored for tasks that involve <messy> optical character recognition (ocr), image-to-text conversion, and math problem solving with latex formatting.")
|
| 255 |
gr.Markdown("⤷ [RolmOCR](https://huggingface.co/reducto/RolmOCR): rolmocr, high-quality, openly available approach to parsing pdfs and other complex documents oprical character recognition. it is designed to handle a wide range of document types, including scanned documents, handwritten text, and complex layouts.")
|
|
|
|
| 256 |
|
| 257 |
image_submit.click(
|
| 258 |
fn=generate_image,
|