Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import random | |
| import uuid | |
| import json | |
| import time | |
| import asyncio | |
| from threading import Thread | |
| from typing import Iterable | |
| import gradio as gr | |
| import spaces | |
| import torch | |
| import numpy as np | |
| from PIL import Image | |
| import cv2 | |
| from transformers import ( | |
| Qwen2VLForConditionalGeneration, | |
| Qwen2_5_VLForConditionalGeneration, | |
| AutoModelForImageTextToText, | |
| AutoProcessor, | |
| TextIteratorStreamer, | |
| ) | |
| from transformers.image_utils import load_image | |
| from gradio.themes import Soft | |
| from gradio.themes.utils import colors, fonts, sizes | |
| # --- Theme and CSS Definition --- | |
| # Define the Thistle color palette | |
| colors.thistle = colors.Color( | |
| name="thistle", | |
| c50="#F9F5F9", | |
| c100="#F0E8F1", | |
| c200="#E7DBE8", | |
| c300="#DECEE0", | |
| c400="#D2BFD8", | |
| c500="#D8BFD8", # Thistle base color | |
| c600="#B59CB7", | |
| c700="#927996", | |
| c800="#6F5675", | |
| c900="#4C3454", | |
| c950="#291233", | |
| ) | |
| colors.red_gray = colors.Color( | |
| name="red_gray", | |
| c50="#f7eded", c100="#f5dcdc", c200="#efb4b4", c300="#e78f8f", | |
| c400="#d96a6a", c500="#c65353", c600="#b24444", c700="#8f3434", | |
| c800="#732d2d", c900="#5f2626", c950="#4d2020", | |
| ) | |
| class ThistleTheme(Soft): | |
| def __init__( | |
| self, | |
| *, | |
| primary_hue: colors.Color | str = colors.gray, | |
| secondary_hue: colors.Color | str = colors.thistle, # Use the new color | |
| neutral_hue: colors.Color | str = colors.slate, | |
| text_size: sizes.Size | str = sizes.text_lg, | |
| font: fonts.Font | str | Iterable[fonts.Font | str] = ( | |
| fonts.GoogleFont("Outfit"), "Arial", "sans-serif", | |
| ), | |
| font_mono: fonts.Font | str | Iterable[fonts.Font | str] = ( | |
| fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace", | |
| ), | |
| ): | |
| super().__init__( | |
| primary_hue=primary_hue, | |
| secondary_hue=secondary_hue, | |
| neutral_hue=neutral_hue, | |
| text_size=text_size, | |
| font=font, | |
| font_mono=font_mono, | |
| ) | |
| super().set( | |
| background_fill_primary="*primary_50", | |
| background_fill_primary_dark="*primary_900", | |
| body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)", | |
| body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)", | |
| button_primary_text_color="black", | |
| button_primary_text_color_hover="white", | |
| button_primary_background_fill="linear-gradient(90deg, *secondary_400, *secondary_500)", | |
| button_primary_background_fill_hover="linear-gradient(90deg, *secondary_500, *secondary_600)", | |
| button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_700)", | |
| button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_600)", | |
| button_secondary_text_color="black", | |
| button_secondary_text_color_hover="white", | |
| button_secondary_background_fill="linear-gradient(90deg, *primary_300, *primary_300)", | |
| button_secondary_background_fill_hover="linear-gradient(90deg, *primary_400, *primary_400)", | |
| button_secondary_background_fill_dark="linear-gradient(90deg, *primary_500, *primary_600)", | |
| button_secondary_background_fill_hover_dark="linear-gradient(90deg, *primary_500, *primary_500)", | |
| slider_color="*secondary_400", | |
| slider_color_dark="*secondary_600", | |
| block_title_text_weight="600", | |
| block_border_width="3px", | |
| block_shadow="*shadow_drop_lg", | |
| button_primary_shadow="*shadow_drop_lg", | |
| button_large_padding="11px", | |
| color_accent_soft="*primary_100", | |
| block_label_background_fill="*primary_200", | |
| ) | |
| # Instantiate the new theme | |
| thistle_theme = ThistleTheme() | |
| css = """ | |
| #main-title h1 { | |
| font-size: 2.3em !important; | |
| } | |
| #output-title h2 { | |
| font-size: 2.1em !important; | |
| } | |
| :root { | |
| --color-grey-50: #f9fafb; | |
| --banner-background: var(--secondary-400); | |
| --banner-text-color: var(--primary-100); | |
| --banner-background-dark: var(--secondary-800); | |
| --banner-text-color-dark: var(--primary-100); | |
| --banner-chrome-height: calc(16px + 43px); | |
| --chat-chrome-height-wide-no-banner: 320px; | |
| --chat-chrome-height-narrow-no-banner: 450px; | |
| --chat-chrome-height-wide: calc(var(--chat-chrome-height-wide-no-banner) + var(--banner-chrome-height)); | |
| --chat-chrome-height-narrow: calc(var(--chat-chrome-height-narrow-no-banner) + var(--banner-chrome-height)); | |
| } | |
| .banner-message { background-color: var(--banner-background); padding: 5px; margin: 0; border-radius: 5px; border: none; } | |
| .banner-message-text { font-size: 13px; font-weight: bolder; color: var(--banner-text-color) !important; } | |
| body.dark .banner-message { background-color: var(--banner-background-dark) !important; } | |
| body.dark .gradio-container .contain .banner-message .banner-message-text { color: var(--banner-text-color-dark) !important; } | |
| .toast-body { background-color: var(--color-grey-50); } | |
| .html-container:has(.css-styles) { padding: 0; margin: 0; } | |
| .css-styles { height: 0; } | |
| .model-message { text-align: end; } | |
| .model-dropdown-container { display: flex; align-items: center; gap: 10px; padding: 0; } | |
| .user-input-container .multimodal-textbox{ border: none !important; } | |
| .control-button { height: 51px; } | |
| button.cancel { border: var(--button-border-width) solid var(--button-cancel-border-color); background: var(--button-cancel-background-fill); color: var(--button-cancel-text-color); box-shadow: var(--button-cancel-shadow); } | |
| button.cancel:hover, .cancel[disabled] { background: var(--button-cancel-background-fill-hover); color: var(--button-cancel-text-color-hover); } | |
| .opt-out-message { top: 8px; } | |
| .opt-out-message .html-container, .opt-out-checkbox label { font-size: 14px !important; padding: 0 !important; margin: 0 !important; color: var(--neutral-400) !important; } | |
| div.block.chatbot { height: calc(100svh - var(--chat-chrome-height-wide)) !important; max-height: 900px !important; } | |
| div.no-padding { padding: 0 !important; } | |
| @media (max-width: 1280px) { div.block.chatbot { height: calc(100svh - var(--chat-chrome-height-wide)) !important; } } | |
| @media (max-width: 1024px) { | |
| .responsive-row { flex-direction: column; } | |
| .model-message { text-align: start; font-size: 10px !important; } | |
| .model-dropdown-container { flex-direction: column; align-items: flex-start; } | |
| div.block.chatbot { height: calc(100svh - var(--chat-chrome-height-narrow)) !important; } | |
| } | |
| @media (max-width: 400px) { | |
| .responsive-row { flex-direction: column; } | |
| .model-message { text-align: start; font-size: 10px !important; } | |
| .model-dropdown-container { flex-direction: column; align-items: flex-start; } | |
| div.block.chatbot { max-height: 360px !important; } | |
| } | |
| @media (max-height: 932px) { .chatbot { max-height: 500px !important; } } | |
| @media (max-height: 1280px) { div.block.chatbot { max-height: 800px !important; } } | |
| """ | |
| # Constants for text generation | |
| MAX_MAX_NEW_TOKENS = 2048 | |
| DEFAULT_MAX_NEW_TOKENS = 1024 | |
| MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
| device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
| print("CUDA_VISIBLE_DEVICES=", os.environ.get("CUDA_VISIBLE_DEVICES")) | |
| print("torch.__version__ =", torch.__version__) | |
| print("torch.version.cuda =", torch.version.cuda) | |
| print("cuda available:", torch.cuda.is_available()) | |
| print("cuda device count:", torch.cuda.device_count()) | |
| if torch.cuda.is_available(): | |
| print("current device:", torch.cuda.current_device()) | |
| print("device name:", torch.cuda.get_device_name(torch.cuda.current_device())) | |
| print("Using device:", device) | |
| # --- Model Loading --- | |
| # Load Nanonets-OCR-s | |
| MODEL_ID_V = "nanonets/Nanonets-OCR-s" | |
| processor_v = AutoProcessor.from_pretrained(MODEL_ID_V, trust_remote_code=True) | |
| model_v = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
| MODEL_ID_V, | |
| trust_remote_code=True, | |
| torch_dtype=torch.float16 | |
| ).to(device).eval() | |
| # Load Qwen2-VL-OCR-2B-Instruct | |
| MODEL_ID_X = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct" | |
| processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True) | |
| model_x = Qwen2VLForConditionalGeneration.from_pretrained( | |
| MODEL_ID_X, | |
| trust_remote_code=True, | |
| torch_dtype=torch.float16 | |
| ).to(device).eval() | |
| # Load Aya-Vision-8b | |
| MODEL_ID_A = "CohereForAI/aya-vision-8b" | |
| processor_a = AutoProcessor.from_pretrained(MODEL_ID_A, trust_remote_code=True) | |
| model_a = AutoModelForImageTextToText.from_pretrained( | |
| MODEL_ID_A, | |
| trust_remote_code=True, | |
| torch_dtype=torch.float16 | |
| ).to(device).eval() | |
| # Load olmOCR-7B-0725 | |
| MODEL_ID_W = "allenai/olmOCR-7B-0725" | |
| processor_w = AutoProcessor.from_pretrained(MODEL_ID_W, trust_remote_code=True) | |
| model_w = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
| MODEL_ID_W, | |
| trust_remote_code=True, | |
| torch_dtype=torch.float16 | |
| ).to(device).eval() | |
| # Load RolmOCR | |
| MODEL_ID_M = "reducto/RolmOCR" | |
| processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True) | |
| model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
| MODEL_ID_M, | |
| trust_remote_code=True, | |
| torch_dtype=torch.float16 | |
| ).to(device).eval() | |
| def downsample_video(video_path): | |
| """ | |
| Downsamples the video to evenly spaced frames. | |
| Each frame is returned as a PIL image along with its timestamp. | |
| """ | |
| vidcap = cv2.VideoCapture(video_path) | |
| total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
| fps = vidcap.get(cv2.CAP_PROP_FPS) | |
| frames = [] | |
| frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int) | |
| for i in frame_indices: | |
| vidcap.set(cv2.CAP_PROP_POS_FRAMES, i) | |
| success, image = vidcap.read() | |
| if success: | |
| image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
| pil_image = Image.fromarray(image) | |
| timestamp = round(i / fps, 2) | |
| frames.append((pil_image, timestamp)) | |
| vidcap.release() | |
| return frames | |
| def generate_image(model_name: str, text: str, image: Image.Image, | |
| max_new_tokens: int = 1024, | |
| temperature: float = 0.6, | |
| top_p: float = 0.9, | |
| top_k: int = 50, | |
| repetition_penalty: float = 1.2): | |
| """ | |
| Generates responses using the selected model for image input. | |
| Yields raw text and Markdown-formatted text. | |
| """ | |
| if model_name == "RolmOCR-7B": | |
| processor = processor_m | |
| model = model_m | |
| elif model_name == "Qwen2-VL-OCR-2B": | |
| processor = processor_x | |
| model = model_x | |
| elif model_name == "Nanonets-OCR-s": | |
| processor = processor_v | |
| model = model_v | |
| elif model_name == "Aya-Vision-8B": | |
| processor = processor_a | |
| model = model_a | |
| elif model_name == "olmOCR-7B-0725": | |
| processor = processor_w | |
| model = model_w | |
| else: | |
| yield "Invalid model selected.", "Invalid model selected." | |
| return | |
| if image is None: | |
| yield "Please upload an image.", "Please upload an image." | |
| return | |
| messages = [{ | |
| "role": "user", | |
| "content": [ | |
| {"type": "image"}, | |
| {"type": "text", "text": text}, | |
| ] | |
| }] | |
| prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| inputs = processor( | |
| text=[prompt_full], | |
| images=[image], | |
| return_tensors="pt", | |
| padding=True, | |
| truncation=True, | |
| max_length=MAX_INPUT_TOKEN_LENGTH | |
| ).to(device) | |
| streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
| generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens} | |
| thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
| thread.start() | |
| buffer = "" | |
| for new_text in streamer: | |
| buffer += new_text | |
| buffer = buffer.replace("<|im_end|>", "") | |
| time.sleep(0.01) | |
| yield buffer, buffer | |
| def generate_video(model_name: str, text: str, video_path: str, | |
| max_new_tokens: int = 1024, | |
| temperature: float = 0.6, | |
| top_p: float = 0.9, | |
| top_k: int = 50, | |
| repetition_penalty: float = 1.2): | |
| """ | |
| Generates responses using the selected model for video input. | |
| Yields raw text and Markdown-formatted text. | |
| """ | |
| if model_name == "RolmOCR-7B": | |
| processor = processor_m | |
| model = model_m | |
| elif model_name == "Qwen2-VL-OCR-2B": | |
| processor = processor_x | |
| model = model_x | |
| elif model_name == "Nanonets-OCR-s": | |
| processor = processor_v | |
| model = model_v | |
| elif model_name == "Aya-Vision-8B": | |
| processor = processor_a | |
| model = model_a | |
| elif model_name == "olmOCR-7B-0725": | |
| processor = processor_w | |
| model = model_w | |
| else: | |
| yield "Invalid model selected.", "Invalid model selected." | |
| return | |
| if video_path is None: | |
| yield "Please upload a video.", "Please upload a video." | |
| return | |
| frames_with_ts = downsample_video(video_path) | |
| images_for_processor = [frame for frame, ts in frames_with_ts] | |
| messages = [{"role": "user", "content": [{"type": "text", "text": text}]}] | |
| for frame in images_for_processor: | |
| messages[0]["content"].insert(0, {"type": "image"}) | |
| prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| inputs = processor( | |
| text=[prompt_full], | |
| images=images_for_processor, | |
| return_tensors="pt", | |
| padding=True, | |
| truncation=True, | |
| max_length=MAX_INPUT_TOKEN_LENGTH | |
| ).to(device) | |
| streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
| generation_kwargs = { | |
| **inputs, | |
| "streamer": streamer, | |
| "max_new_tokens": max_new_tokens, | |
| "do_sample": True, | |
| "temperature": temperature, | |
| "top_p": top_p, | |
| "top_k": top_k, | |
| "repetition_penalty": repetition_penalty, | |
| } | |
| thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
| thread.start() | |
| buffer = "" | |
| for new_text in streamer: | |
| buffer += new_text | |
| buffer = buffer.replace("<|im_end|>", "") | |
| time.sleep(0.01) | |
| yield buffer, buffer | |
| # Define examples for image and video inference | |
| image_examples = [ | |
| ["Extract the full page.", "images/ocr.png"], | |
| ["Extract the content.", "images/4.png"], | |
| ["Convert this page to doc [table] precisely for markdown.", "images/0.png"] | |
| ] | |
| video_examples = [ | |
| ["Explain the Ad in Detail.", "videos/1.mp4"], | |
| ["Identify the main actions in the cartoon video.", "videos/2.mp4"] | |
| ] | |
| # Create the Gradio Interface | |
| with gr.Blocks(css=css, theme=thistle_theme) as demo: | |
| gr.Markdown("# **Multimodal OCR**", elem_id="main-title") | |
| with gr.Row(): | |
| with gr.Column(scale=2): | |
| with gr.Tabs(): | |
| with gr.TabItem("Image Inference"): | |
| image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...") | |
| image_upload = gr.Image(type="pil", label="Upload Image", height=290) | |
| image_submit = gr.Button("Submit", variant="primary") | |
| gr.Examples( | |
| examples=image_examples, | |
| inputs=[image_query, image_upload] | |
| ) | |
| with gr.TabItem("Video Inference"): | |
| video_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...") | |
| video_upload = gr.Video(label="Upload Video", height=290) | |
| video_submit = gr.Button("Submit", variant="primary") | |
| gr.Examples( | |
| examples=video_examples, | |
| inputs=[video_query, video_upload] | |
| ) | |
| with gr.Accordion("Advanced options", open=False): | |
| max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS) | |
| temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6) | |
| top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9) | |
| top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50) | |
| repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2) | |
| with gr.Column(scale=3): | |
| gr.Markdown("## Output", elem_id="output-title") | |
| output = gr.Textbox(label="Raw Output Stream", interactive=False, lines=11, show_copy_button=True) | |
| with gr.Accordion("(Result.md)", open=False): | |
| markdown_output = gr.Markdown(label="(Result.Md)", latex_delimiters=[ | |
| {"left": "$$", "right": "$$", "display": True}, | |
| {"left": "$", "right": "$", "display": False} | |
| ]) | |
| model_choice = gr.Radio( | |
| choices=["olmOCR-7B-0725", "Nanonets-OCR-s", "RolmOCR-7B", | |
| "Aya-Vision-8B", "Qwen2-VL-OCR-2B"], | |
| label="Select Model", | |
| value="olmOCR-7B-0725" | |
| ) | |
| image_submit.click( | |
| fn=generate_image, | |
| inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty], | |
| outputs=[output, markdown_output] | |
| ) | |
| video_submit.click( | |
| fn=generate_video, | |
| inputs=[model_choice, video_query, video_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty], | |
| outputs=[output, markdown_output] | |
| ) | |
| if __name__ == "__main__": | |
| demo.queue(max_size=50).launch(mcp_server=True, ssr_mode=False, show_error=True) |