Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -54,9 +54,6 @@ import numpy as np
|
|
| 54 |
# Load model directly
|
| 55 |
from transformers import AutoProcessor, AutoModelForPreTraining
|
| 56 |
|
| 57 |
-
processor = AutoProcessor.from_pretrained("facebook/wav2vec2-base")
|
| 58 |
-
model = AutoModelForPreTraining.from_pretrained("facebook/wav2vec2-base")
|
| 59 |
-
|
| 60 |
def transcribe_audio(audio_bytes):
|
| 61 |
# processor = AutoProcessor.from_pretrained("facebook/s2t-small-librispeech-asr")
|
| 62 |
# model = AutoModelForSpeechSeq2Seq.from_pretrained("facebook/s2t-small-librispeech-asr")
|
|
@@ -64,20 +61,14 @@ def transcribe_audio(audio_bytes):
|
|
| 64 |
model = AutoModelForPreTraining.from_pretrained("facebook/wav2vec2-base")
|
| 65 |
# Convert audio bytes to numpy array
|
| 66 |
audio_array = np.frombuffer(audio_bytes, dtype=np.int16)
|
| 67 |
-
|
| 68 |
# Normalize audio array
|
| 69 |
audio_tensor = torch.tensor(audio_array, dtype=torch.float64) / 32768.0
|
| 70 |
-
|
| 71 |
# Provide inputs to the processor
|
| 72 |
-
#inputs = processor(audio=audio_tensor, sampling_rate=16000, return_tensors="pt")
|
| 73 |
input_features = processor(audio_tensor, sampling_rate=16000, return_tensors="pt").input_features
|
| 74 |
-
|
| 75 |
# generate token ids
|
| 76 |
predicted_ids = model.generate(input_features)
|
| 77 |
# decode token ids to text
|
| 78 |
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=False)
|
| 79 |
-
|
| 80 |
-
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
| 81 |
return transcription
|
| 82 |
|
| 83 |
# Streamlit app
|
|
|
|
| 54 |
# Load model directly
|
| 55 |
from transformers import AutoProcessor, AutoModelForPreTraining
|
| 56 |
|
|
|
|
|
|
|
|
|
|
| 57 |
def transcribe_audio(audio_bytes):
|
| 58 |
# processor = AutoProcessor.from_pretrained("facebook/s2t-small-librispeech-asr")
|
| 59 |
# model = AutoModelForSpeechSeq2Seq.from_pretrained("facebook/s2t-small-librispeech-asr")
|
|
|
|
| 61 |
model = AutoModelForPreTraining.from_pretrained("facebook/wav2vec2-base")
|
| 62 |
# Convert audio bytes to numpy array
|
| 63 |
audio_array = np.frombuffer(audio_bytes, dtype=np.int16)
|
|
|
|
| 64 |
# Normalize audio array
|
| 65 |
audio_tensor = torch.tensor(audio_array, dtype=torch.float64) / 32768.0
|
|
|
|
| 66 |
# Provide inputs to the processor
|
|
|
|
| 67 |
input_features = processor(audio_tensor, sampling_rate=16000, return_tensors="pt").input_features
|
|
|
|
| 68 |
# generate token ids
|
| 69 |
predicted_ids = model.generate(input_features)
|
| 70 |
# decode token ids to text
|
| 71 |
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=False)
|
|
|
|
|
|
|
| 72 |
return transcription
|
| 73 |
|
| 74 |
# Streamlit app
|