Spaces:
Sleeping
Sleeping
| import os | |
| from typing import List, Optional | |
| import logging | |
| import dotenv | |
| from azure.ai.textanalytics import TextAnalyticsClient | |
| from azure.core.credentials import AzureKeyCredential | |
| from presidio_analyzer import EntityRecognizer, RecognizerResult, AnalysisExplanation | |
| from presidio_analyzer.nlp_engine import NlpArtifacts | |
| logger = logging.getLogger("presidio-streamlit") | |
| class AzureAIServiceWrapper(EntityRecognizer): | |
| from azure.ai.textanalytics._models import PiiEntityCategory | |
| TA_SUPPORTED_ENTITIES = [r.value for r in PiiEntityCategory] | |
| def __init__( | |
| self, | |
| supported_entities: Optional[List[str]] = None, | |
| supported_language: str = "en", | |
| ta_client: Optional[TextAnalyticsClient] = None, | |
| ta_key: Optional[str] = None, | |
| ta_endpoint: Optional[str] = None, | |
| ): | |
| """ | |
| Wrapper for the Azure Text Analytics client | |
| :param ta_client: object of type TextAnalyticsClient | |
| :param ta_key: Azure cognitive Services for Language key | |
| :param ta_endpoint: Azure cognitive Services for Language endpoint | |
| """ | |
| if not supported_entities: | |
| supported_entities = self.TA_SUPPORTED_ENTITIES | |
| super().__init__( | |
| supported_entities=supported_entities, | |
| supported_language=supported_language, | |
| name="Azure AI Language PII", | |
| ) | |
| self.ta_key = ta_key | |
| self.ta_endpoint = ta_endpoint | |
| if not ta_client: | |
| ta_client = self.__authenticate_client(ta_key, ta_endpoint) | |
| self.ta_client = ta_client | |
| def __authenticate_client(key: str, endpoint: str): | |
| ta_credential = AzureKeyCredential(key) | |
| text_analytics_client = TextAnalyticsClient( | |
| endpoint=endpoint, credential=ta_credential | |
| ) | |
| return text_analytics_client | |
| def analyze( | |
| self, text: str, entities: List[str] = None, nlp_artifacts: NlpArtifacts = None | |
| ) -> List[RecognizerResult]: | |
| if not entities: | |
| entities = [] | |
| response = self.ta_client.recognize_pii_entities( | |
| [text], language=self.supported_language | |
| ) | |
| results = [doc for doc in response if not doc.is_error] | |
| recognizer_results = [] | |
| for res in results: | |
| for entity in res.entities: | |
| if entity.category not in self.supported_entities: | |
| continue | |
| analysis_explanation = AzureAIServiceWrapper._build_explanation( | |
| original_score=entity.confidence_score, | |
| entity_type=entity.category, | |
| ) | |
| recognizer_results.append( | |
| RecognizerResult( | |
| entity_type=entity.category, | |
| start=entity.offset, | |
| end=entity.offset + len(entity.text), | |
| score=entity.confidence_score, | |
| analysis_explanation=analysis_explanation, | |
| ) | |
| ) | |
| return recognizer_results | |
| def _build_explanation( | |
| original_score: float, entity_type: str | |
| ) -> AnalysisExplanation: | |
| explanation = AnalysisExplanation( | |
| recognizer=AzureAIServiceWrapper.__class__.__name__, | |
| original_score=original_score, | |
| textual_explanation=f"Identified as {entity_type} by Text Analytics", | |
| ) | |
| return explanation | |
| def load(self) -> None: | |
| pass | |
| if __name__ == "__main__": | |
| import presidio_helpers | |
| dotenv.load_dotenv() | |
| text = """ | |
| Here are a few example sentences we currently support: | |
| Hello, my name is David Johnson and I live in Maine. | |
| My credit card number is 4095-2609-9393-4932 and my crypto wallet id is 16Yeky6GMjeNkAiNcBY7ZhrLoMSgg1BoyZ. | |
| On September 18 I visited microsoft.com and sent an email to [email protected], from the IP 192.168.0.1. | |
| My passport: 191280342 and my phone number: (212) 555-1234. | |
| This is a valid International Bank Account Number: IL150120690000003111111 . Can you please check the status on bank account 954567876544? | |
| Kate's social security number is 078-05-1126. Her driver license? it is 1234567A. | |
| """ | |
| analyzer = presidio_helpers.analyzer_engine( | |
| model_path="Azure Text Analytics PII", | |
| ta_key=os.environ["TA_KEY"], | |
| ta_endpoint=os.environ["TA_ENDPOINT"], | |
| ) | |
| analyzer.analyze(text=text, language="en") | |