Spaces:
Runtime error
Runtime error
| """PIVOT Demo.""" | |
| import gradio as gr | |
| import numpy as np | |
| from vip_runner import vip_runner | |
| from vlms import GPT4V | |
| # Adjust radius of annotations based on size of the image | |
| radius_per_pixel = 0.05 | |
| def run_vip( | |
| im, | |
| query, | |
| n_samples_init, | |
| n_samples_opt, | |
| n_iters, | |
| n_parallel_trials, | |
| openai_api_key, | |
| progress=gr.Progress(track_tqdm=False), | |
| ): | |
| if not openai_api_key: | |
| return [], 'Must provide OpenAI API Key' | |
| if im is None: | |
| return [], 'Must specify image' | |
| if not query: | |
| return [], 'Must specify description' | |
| img_size = np.min(im.shape[:2]) | |
| print(int(img_size * radius_per_pixel)) | |
| # add some action spec | |
| style = { | |
| 'num_samples': 12, | |
| 'circle_alpha': 0.6, | |
| 'alpha': 0.8, | |
| 'arrow_alpha': 0.0, | |
| 'radius': int(img_size * radius_per_pixel), | |
| 'thickness': 2, | |
| 'fontsize': int(img_size * radius_per_pixel), | |
| 'rgb_scale': 255, | |
| 'focal_offset': 1, # camera distance / std of action in z | |
| } | |
| action_spec = { | |
| 'loc': [0, 0, 0], | |
| 'scale': [0.0, 100, 100], | |
| 'min_scale': [0.0, 30, 30], | |
| 'min': [0, -300.0, -300], | |
| 'max': [0, 300, 300], | |
| 'action_to_coord': 250, | |
| 'robot': None, | |
| } | |
| vlm = GPT4V(openai_api_key=openai_api_key) | |
| vip_gen = vip_runner( | |
| vlm, | |
| im, | |
| query, | |
| style, | |
| action_spec, | |
| n_samples_init=n_samples_init, | |
| n_samples_opt=n_samples_opt, | |
| n_iters=n_iters, | |
| n_parallel_trials=n_parallel_trials, | |
| ) | |
| for rst in vip_gen: | |
| yield rst | |
| examples = [ | |
| { | |
| 'im_path': 'ims/aloha.png', | |
| 'desc': 'a point between the fork and the cup', | |
| }, | |
| { | |
| 'im_path': 'ims/robot.png', | |
| 'desc': 'the toy in the middle of the table', | |
| }, | |
| { | |
| 'im_path': 'ims/parking.jpg', | |
| 'desc': 'a place to park if I am handicapped', | |
| }, | |
| { | |
| 'im_path': 'ims/tools.png', | |
| 'desc': 'what should I use pull a nail' | |
| }, | |
| ] | |
| with gr.Blocks() as demo: | |
| gr.Markdown(""" | |
| # PIVOT: Prompting with Iterative Visual Optimization | |
| [website](https://pivot-prompt.github.io/) | |
| [view on huggingface](https://huggingface.co/spaces/pivot-prompt/pivot-prompt-demo/) | |
| The demo below showcases a version of the PIVOT algorithm, which uses iterative visual prompts to optimize and guide the reasoning of Vision-Langauge-Models (VLMs). | |
| Given an image and a description of an object or region, | |
| PIVOT iteratively searches for the point in the image that best corresponds to the description. | |
| This is done through visual prompting, where instead of reasoning with text, the VLM reasons over images annotated with sampled points, | |
| in order to pick the best points. | |
| In each iteration, we take the points previously selected by the VLM, resample new points around the their mean, and repeat the process. | |
| To get started, you can use the provided example image and query pairs, or | |
| upload your own images. | |
| This demo uses GPT-4V, so it requires an OpenAI API key. | |
| Hyperparameters to set: | |
| * N Samples for Initialization - how many initial points are sampled for the first PIVOT iteration. | |
| * N Samples for Optimiazation - how many points are sampled for subsequent iterations. | |
| * N Iterations - how many optimization iterations to perform. | |
| * N Ensemble Recursions - how many ensembles for recursive PIVOT. | |
| Note that each iteration takes about ~10s, and each additional ensemble adds a multiple number of N Iterations. | |
| After PIVOT finishes, the image gallery below will visualize PIVOT results throughout all the iterations. | |
| There are two images for each iteration - the first one shows all the sampled points, and the second one shows which one PIVOT picked. | |
| The Info textbox will show the final selected pixel coordinate that PIVOT converged to. | |
| **To use the example images, right click on the image -> copy image, then click the clipboard icon in the Input Image box.** | |
| """.strip()) | |
| gr.Markdown( | |
| '## Example Images and Queries\n Drag images into the image box below (Try safari on Mac if dragging does not work)' | |
| ) | |
| with gr.Row(equal_height=True): | |
| for example in examples: | |
| gr.Image(value=example['im_path'], type='numpy', label=example['desc']) | |
| gr.Markdown('## New Query') | |
| with gr.Row(): | |
| with gr.Column(): | |
| inp_im = gr.Image( | |
| label='Input Image', | |
| type='numpy', | |
| show_label=True, | |
| value=examples[0]['im_path'], | |
| ) | |
| inp_query = gr.Textbox( | |
| label='Description', | |
| lines=1, | |
| placeholder=examples[0]['desc'], | |
| ) | |
| with gr.Column(): | |
| inp_openai_api_key = gr.Textbox( | |
| label='OpenAI API Key (not saved)', lines=1 | |
| ) | |
| with gr.Group(): | |
| inp_n_samples_init = gr.Slider( | |
| label='N Samples for Initialization', | |
| minimum=10, | |
| maximum=40, | |
| value=25, | |
| step=1, | |
| ) | |
| inp_n_samples_opt = gr.Slider( | |
| label='N Samples for Optimization', | |
| minimum=3, | |
| maximum=20, | |
| value=10, | |
| step=1, | |
| ) | |
| inp_n_iters = gr.Slider( | |
| label='N Iterations', minimum=1, maximum=5, value=3, step=1 | |
| ) | |
| inp_n_parallel_trials = gr.Slider( | |
| label='N Parallel Trials', minimum=1, maximum=3, value=1, step=1 | |
| ) | |
| btn_run = gr.Button('Run') | |
| with gr.Group(): | |
| out_ims = gr.Gallery( | |
| label='Images with Sampled and Chosen Points', | |
| columns=4, | |
| rows=1, | |
| interactive=False, | |
| object_fit="contain", height="auto" | |
| ) | |
| out_info = gr.Textbox(label='Info', lines=1) | |
| btn_run.click( | |
| run_vip, | |
| inputs=[ | |
| inp_im, | |
| inp_query, | |
| inp_n_samples_init, | |
| inp_n_samples_opt, | |
| inp_n_iters, | |
| inp_n_parallel_trials, | |
| inp_openai_api_key, | |
| ], | |
| outputs=[out_ims, out_info], | |
| ) | |
| demo.launch() | |