Spaces:
Sleeping
Sleeping
| """ Loader Factory, Fast Collate, CUDA Prefetcher | |
| Prefetcher and Fast Collate inspired by NVIDIA APEX example at | |
| https://github.com/NVIDIA/apex/commit/d5e2bb4bdeedd27b1dfaf5bb2b24d6c000dee9be#diff-cf86c282ff7fba81fad27a559379d5bf | |
| Hacked together by / Copyright 2020 Ross Wightman | |
| """ | |
| import torch.utils.data | |
| import numpy as np | |
| from .transforms_factory import create_transform | |
| from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD | |
| from .distributed_sampler import OrderedDistributedSampler | |
| from .random_erasing import RandomErasing | |
| from .mixup import FastCollateMixup | |
| def fast_collate(batch): | |
| """ A fast collation function optimized for uint8 images (np array or torch) and int64 targets (labels)""" | |
| assert isinstance(batch[0], tuple) | |
| batch_size = len(batch) | |
| if isinstance(batch[0][0], tuple): | |
| # This branch 'deinterleaves' and flattens tuples of input tensors into one tensor ordered by position | |
| # such that all tuple of position n will end up in a torch.split(tensor, batch_size) in nth position | |
| inner_tuple_size = len(batch[0][0]) | |
| flattened_batch_size = batch_size * inner_tuple_size | |
| targets = torch.zeros(flattened_batch_size, dtype=torch.int64) | |
| tensor = torch.zeros((flattened_batch_size, *batch[0][0][0].shape), dtype=torch.uint8) | |
| for i in range(batch_size): | |
| assert len(batch[i][0]) == inner_tuple_size # all input tensor tuples must be same length | |
| for j in range(inner_tuple_size): | |
| targets[i + j * batch_size] = batch[i][1] | |
| tensor[i + j * batch_size] += torch.from_numpy(batch[i][0][j]) | |
| return tensor, targets | |
| elif isinstance(batch[0][0], np.ndarray): | |
| targets = torch.tensor([b[1] for b in batch], dtype=torch.int64) | |
| assert len(targets) == batch_size | |
| tensor = torch.zeros((batch_size, *batch[0][0].shape), dtype=torch.uint8) | |
| for i in range(batch_size): | |
| tensor[i] += torch.from_numpy(batch[i][0]) | |
| return tensor, targets | |
| elif isinstance(batch[0][0], torch.Tensor): | |
| targets = torch.tensor([b[1] for b in batch], dtype=torch.int64) | |
| assert len(targets) == batch_size | |
| tensor = torch.zeros((batch_size, *batch[0][0].shape), dtype=torch.uint8) | |
| for i in range(batch_size): | |
| tensor[i].copy_(batch[i][0]) | |
| return tensor, targets | |
| else: | |
| assert False | |
| class PrefetchLoader: | |
| def __init__(self, | |
| loader, | |
| mean=IMAGENET_DEFAULT_MEAN, | |
| std=IMAGENET_DEFAULT_STD, | |
| fp16=False, | |
| re_prob=0., | |
| re_mode='const', | |
| re_count=1, | |
| re_num_splits=0): | |
| self.loader = loader | |
| self.mean = torch.tensor([x * 255 for x in mean]).cuda().view(1, 3, 1, 1) | |
| self.std = torch.tensor([x * 255 for x in std]).cuda().view(1, 3, 1, 1) | |
| self.fp16 = fp16 | |
| if fp16: | |
| self.mean = self.mean.half() | |
| self.std = self.std.half() | |
| if re_prob > 0.: | |
| self.random_erasing = RandomErasing( | |
| probability=re_prob, mode=re_mode, max_count=re_count, num_splits=re_num_splits) | |
| else: | |
| self.random_erasing = None | |
| def __iter__(self): | |
| stream = torch.cuda.Stream() | |
| first = True | |
| for next_input, next_target in self.loader: | |
| with torch.cuda.stream(stream): | |
| next_input = next_input.cuda(non_blocking=True) | |
| next_target = next_target.cuda(non_blocking=True) | |
| if self.fp16: | |
| next_input = next_input.half().sub_(self.mean).div_(self.std) | |
| else: | |
| next_input = next_input.float().sub_(self.mean).div_(self.std) | |
| if self.random_erasing is not None: | |
| next_input = self.random_erasing(next_input) | |
| if not first: | |
| yield input, target | |
| else: | |
| first = False | |
| torch.cuda.current_stream().wait_stream(stream) | |
| input = next_input | |
| target = next_target | |
| yield input, target | |
| def __len__(self): | |
| return len(self.loader) | |
| def sampler(self): | |
| return self.loader.sampler | |
| def dataset(self): | |
| return self.loader.dataset | |
| def mixup_enabled(self): | |
| if isinstance(self.loader.collate_fn, FastCollateMixup): | |
| return self.loader.collate_fn.mixup_enabled | |
| else: | |
| return False | |
| def mixup_enabled(self, x): | |
| if isinstance(self.loader.collate_fn, FastCollateMixup): | |
| self.loader.collate_fn.mixup_enabled = x | |
| def create_loader( | |
| dataset, | |
| input_size, | |
| batch_size, | |
| is_training=False, | |
| use_prefetcher=True, | |
| no_aug=False, | |
| re_prob=0., | |
| re_mode='const', | |
| re_count=1, | |
| re_split=False, | |
| scale=None, | |
| ratio=None, | |
| hflip=0.5, | |
| vflip=0., | |
| color_jitter=0.4, | |
| auto_augment=None, | |
| num_aug_splits=0, | |
| interpolation='bilinear', | |
| mean=IMAGENET_DEFAULT_MEAN, | |
| std=IMAGENET_DEFAULT_STD, | |
| num_workers=1, | |
| distributed=False, | |
| crop_pct=None, | |
| collate_fn=None, | |
| pin_memory=False, | |
| fp16=False, | |
| tf_preprocessing=False, | |
| use_multi_epochs_loader=False, | |
| persistent_workers=True, | |
| ): | |
| re_num_splits = 0 | |
| if re_split: | |
| # apply RE to second half of batch if no aug split otherwise line up with aug split | |
| re_num_splits = num_aug_splits or 2 | |
| dataset.transform = create_transform( | |
| input_size, | |
| is_training=is_training, | |
| use_prefetcher=use_prefetcher, | |
| no_aug=no_aug, | |
| scale=scale, | |
| ratio=ratio, | |
| hflip=hflip, | |
| vflip=vflip, | |
| color_jitter=color_jitter, | |
| auto_augment=auto_augment, | |
| interpolation=interpolation, | |
| mean=mean, | |
| std=std, | |
| crop_pct=crop_pct, | |
| tf_preprocessing=tf_preprocessing, | |
| re_prob=re_prob, | |
| re_mode=re_mode, | |
| re_count=re_count, | |
| re_num_splits=re_num_splits, | |
| separate=num_aug_splits > 0, | |
| ) | |
| sampler = None | |
| if distributed and not isinstance(dataset, torch.utils.data.IterableDataset): | |
| if is_training: | |
| sampler = torch.utils.data.distributed.DistributedSampler(dataset) | |
| else: | |
| # This will add extra duplicate entries to result in equal num | |
| # of samples per-process, will slightly alter validation results | |
| sampler = OrderedDistributedSampler(dataset) | |
| if collate_fn is None: | |
| collate_fn = fast_collate if use_prefetcher else torch.utils.data.dataloader.default_collate | |
| loader_class = torch.utils.data.DataLoader | |
| if use_multi_epochs_loader: | |
| loader_class = MultiEpochsDataLoader | |
| loader_args = dict( | |
| batch_size=batch_size, | |
| shuffle=not isinstance(dataset, torch.utils.data.IterableDataset) and sampler is None and is_training, | |
| num_workers=num_workers, | |
| sampler=sampler, | |
| collate_fn=collate_fn, | |
| pin_memory=pin_memory, | |
| drop_last=is_training, | |
| persistent_workers=persistent_workers) | |
| try: | |
| loader = loader_class(dataset, **loader_args) | |
| except TypeError as e: | |
| loader_args.pop('persistent_workers') # only in Pytorch 1.7+ | |
| loader = loader_class(dataset, **loader_args) | |
| if use_prefetcher: | |
| prefetch_re_prob = re_prob if is_training and not no_aug else 0. | |
| loader = PrefetchLoader( | |
| loader, | |
| mean=mean, | |
| std=std, | |
| fp16=fp16, | |
| re_prob=prefetch_re_prob, | |
| re_mode=re_mode, | |
| re_count=re_count, | |
| re_num_splits=re_num_splits | |
| ) | |
| return loader | |
| class MultiEpochsDataLoader(torch.utils.data.DataLoader): | |
| def __init__(self, *args, **kwargs): | |
| super().__init__(*args, **kwargs) | |
| self._DataLoader__initialized = False | |
| self.batch_sampler = _RepeatSampler(self.batch_sampler) | |
| self._DataLoader__initialized = True | |
| self.iterator = super().__iter__() | |
| def __len__(self): | |
| return len(self.batch_sampler.sampler) | |
| def __iter__(self): | |
| for i in range(len(self)): | |
| yield next(self.iterator) | |
| class _RepeatSampler(object): | |
| """ Sampler that repeats forever. | |
| Args: | |
| sampler (Sampler) | |
| """ | |
| def __init__(self, sampler): | |
| self.sampler = sampler | |
| def __iter__(self): | |
| while True: | |
| yield from iter(self.sampler) | |