Delete app.py
Browse files
app.py
DELETED
|
@@ -1,96 +0,0 @@
|
|
| 1 |
-
import os
|
| 2 |
-
from fastai.vision.all import *
|
| 3 |
-
import gradio as gr
|
| 4 |
-
import pickle
|
| 5 |
-
from transformers import AutoTokenizer, AutoModelWithLMHead
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
# Facial expression classifier
|
| 10 |
-
|
| 11 |
-
# Emotion
|
| 12 |
-
learn_emotion = load_learner('emotions_vgg.pkl')
|
| 13 |
-
learn_emotion_labels = learn_emotion.dls.vocab
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
# Predict
|
| 17 |
-
def predict(img):
|
| 18 |
-
img = PILImage.create(img)
|
| 19 |
-
pred_emotion, pred_emotion_idx, probs_emotion = learn_emotion.predict(img)
|
| 20 |
-
predicted_emotion = learn_emotion_labels[pred_emotion_idx]
|
| 21 |
-
return predicted_emotion
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
# Gradio
|
| 25 |
-
title = "Facial Emotion Detector"
|
| 26 |
-
|
| 27 |
-
description = gr.Markdown(
|
| 28 |
-
"""Ever wondered what a person might be feeling looking at their picture?
|
| 29 |
-
Well, now you can! Try this fun app. Just upload a facial image in JPG or
|
| 30 |
-
PNG format. You can now see what they might have felt when the picture
|
| 31 |
-
was taken.
|
| 32 |
-
|
| 33 |
-
**Tip**: Be sure to only include face to get best results. Check some sample images
|
| 34 |
-
below for inspiration!""").value
|
| 35 |
-
|
| 36 |
-
article = gr.Markdown(
|
| 37 |
-
"""**DISCLAIMER:** This model does not reveal the actual emotional state of a person. Use and
|
| 38 |
-
interpret results at your own risk!.
|
| 39 |
-
|
| 40 |
-
**PREMISE:** The idea is to determine an overall emotion of a person
|
| 41 |
-
based on the pictures. We are restricting pictures to only include close-up facial
|
| 42 |
-
images.
|
| 43 |
-
|
| 44 |
-
**DATA:** FER2013 dataset consists of 48x48 pixel grayscale images of faces.Images
|
| 45 |
-
are assigned one of the 7 emotions: Angry, Disgust, Fear, Happy, Sad, Surprise, and Neutral.
|
| 46 |
-
|
| 47 |
-
""").value
|
| 48 |
-
|
| 49 |
-
enable_queue=True
|
| 50 |
-
|
| 51 |
-
examples = ['happy1.jpg', 'happy2.jpg', 'angry1.png', 'angry2.jpg', 'neutral1.jpg', 'neutral2.jpg']
|
| 52 |
-
|
| 53 |
-
image_mode=gr.Interface(fn = predict,
|
| 54 |
-
inputs = gr.Image( image_mode='L'),
|
| 55 |
-
outputs = [gr.Label(label='Emotion')], #gr.Label(),
|
| 56 |
-
title = title,
|
| 57 |
-
examples = examples,
|
| 58 |
-
description = description,
|
| 59 |
-
article=article,
|
| 60 |
-
allow_flagging='never')
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
# Txet Model
|
| 66 |
-
|
| 67 |
-
# Load tokenizer and model from pickles
|
| 68 |
-
with open("emotion_tokenizer.pkl", "rb") as f:
|
| 69 |
-
tokenizer = pickle.load(f)
|
| 70 |
-
|
| 71 |
-
with open("emotion_model.pkl", "rb") as f:
|
| 72 |
-
model = pickle.load(f)
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
def classify_emotion(text):
|
| 77 |
-
# Tokenize input text and generate output
|
| 78 |
-
input_ids = tokenizer.encode("emotion: " + text, return_tensors="pt")
|
| 79 |
-
output = model.generate(input_ids)
|
| 80 |
-
output_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
| 81 |
-
|
| 82 |
-
# Classify the emotion into positive, negative, or neutral
|
| 83 |
-
if output_text in ["joy", "love"]:
|
| 84 |
-
return "Positive"
|
| 85 |
-
elif output_text == "surprise":
|
| 86 |
-
return "Neutral"
|
| 87 |
-
else:
|
| 88 |
-
return "Negative"
|
| 89 |
-
return output_text
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
text_model = gr.Interface(fn=classify_emotion, inputs="textbox", outputs="textbox")
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
main_model = gr.TabbedInterface([text_model, image_mode], ["Text Emotion Recognition", "Image Emotion Recognition"])
|
| 96 |
-
main_model.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|