parthib07 commited on
Commit
f062b00
·
verified ·
1 Parent(s): cd25007

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +50 -50
app.py CHANGED
@@ -1,50 +1,50 @@
1
- import streamlit as st
2
- import os
3
- from dotenv import load_dotenv
4
- from llama_index.readers.web import SimpleWebPageReader
5
- from llama_index.core import VectorStoreIndex
6
- from llama_index.embeddings.gemini import GeminiEmbedding
7
- import google.generativeai as genai
8
- from llama_index.llms.gemini import Gemini
9
- from llama_index.core.node_parser import SentenceSplitter
10
- from llama_index.core import Settings
11
-
12
- st.title("LLM-Powered QA System")
13
- load_dotenv()
14
- api_key = os.getenv('GOOGLE_API_KEY')
15
- model = Gemini(model_name="models/gemini-pro")
16
-
17
- def validate_api_key():
18
- if not api_key:
19
- st.error("GOOGLE_API_KEY environment variable not found!")
20
- st.stop()
21
- genai.configure(api_key=api_key)
22
-
23
- validate_api_key()
24
- url = st.text_input("Enter Webpage URL to Process:")
25
- question = st.text_input("Enter your question from the webpage:")
26
-
27
- if st.button("Process Webpage"):
28
- if url:
29
- try:
30
- st.info("Fetching webpage content...")
31
- reader = SimpleWebPageReader(html_to_text=True)
32
- documents = reader.load_data(urls=[url])
33
- embed_model = GeminiEmbedding(model_name="models/embedding-001")
34
- Settings.llm = model
35
- Settings.embed_model = embed_model
36
- Settings.node_parser = SentenceSplitter(chunk_size=512, chunk_overlap=20)
37
- Settings.num_output = 512
38
- Settings.context_window = 3900
39
- index = VectorStoreIndex.from_documents(documents,settings = Settings)
40
- query_engine = index.as_query_engine()
41
- response = query_engine.query(question)
42
- st.write("Response:" + response.response)
43
- except Exception as e:
44
- st.error(f"Error occurred: {str(e)}")
45
-
46
-
47
-
48
-
49
-
50
-
 
1
+ import streamlit as st
2
+ import os
3
+ from dotenv import load_dotenv
4
+ from llama_index.readers.web import SimpleWebPageReader
5
+ from llama_index.core import VectorStoreIndex
6
+ from llama_index.embeddings.gemini import GeminiEmbedding
7
+ import google.generativeai as genai
8
+ from llama_index.llms.gemini import Gemini
9
+ from llama_index.core.node_parser import SentenceSplitter
10
+ from llama_index.core import Settings
11
+
12
+ st.title("LLM-Powered QA System")
13
+ load_dotenv()
14
+ api_key = os.getenv('GOOGLE_API_KEY')
15
+ model = Gemini(model_name="models/gemini-1.5-flash")
16
+
17
+ def validate_api_key():
18
+ if not api_key:
19
+ st.error("GOOGLE_API_KEY environment variable not found!")
20
+ st.stop()
21
+ genai.configure(api_key=api_key)
22
+
23
+ validate_api_key()
24
+ url = st.text_input("Enter Webpage URL to Process:")
25
+ question = st.text_input("Enter your question from the webpage:")
26
+
27
+ if st.button("Process Webpage"):
28
+ if url:
29
+ try:
30
+ st.info("Fetching webpage content...")
31
+ reader = SimpleWebPageReader(html_to_text=True)
32
+ documents = reader.load_data(urls=[url])
33
+ embed_model = GeminiEmbedding(model_name="models/embedding-001")
34
+ Settings.llm = model
35
+ Settings.embed_model = embed_model
36
+ Settings.node_parser = SentenceSplitter(chunk_size=512, chunk_overlap=20)
37
+ Settings.num_output = 512
38
+ Settings.context_window = 3900
39
+ index = VectorStoreIndex.from_documents(documents,settings = Settings)
40
+ query_engine = index.as_query_engine()
41
+ response = query_engine.query(question)
42
+ st.write("Response:" + response.response)
43
+ except Exception as e:
44
+ st.error(f"Error occurred: {str(e)}")
45
+
46
+
47
+
48
+
49
+
50
+