Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| import os | |
| from dotenv import load_dotenv | |
| from llama_index.readers.web import SimpleWebPageReader | |
| from llama_index.core import VectorStoreIndex | |
| from llama_index.embeddings.gemini import GeminiEmbedding | |
| import google.generativeai as genai | |
| from llama_index.llms.gemini import Gemini | |
| from llama_index.core.node_parser import SentenceSplitter | |
| from llama_index.core import Settings | |
| st.title("LLM-Powered QA System") | |
| load_dotenv() | |
| api_key = os.getenv('GOOGLE_API_KEY') | |
| model = Gemini(model_name="models/gemini-pro") | |
| def validate_api_key(): | |
| if not api_key: | |
| st.error("GOOGLE_API_KEY environment variable not found!") | |
| st.stop() | |
| genai.configure(api_key=api_key) | |
| validate_api_key() | |
| url = st.text_input("Enter Webpage URL to Process:") | |
| question = st.text_input("Enter your question from the webpage:") | |
| if st.button("Process Webpage"): | |
| if url: | |
| try: | |
| st.info("Fetching webpage content...") | |
| reader = SimpleWebPageReader(html_to_text=True) | |
| documents = reader.load_data(urls=[url]) | |
| embed_model = GeminiEmbedding(model_name="models/embedding-001") | |
| Settings.llm = model | |
| Settings.embed_model = embed_model | |
| Settings.node_parser = SentenceSplitter(chunk_size=512, chunk_overlap=20) | |
| Settings.num_output = 512 | |
| Settings.context_window = 3900 | |
| index = VectorStoreIndex.from_documents(documents,settings = Settings) | |
| query_engine = index.as_query_engine() | |
| response = query_engine.query(question) | |
| st.write("Response:" + response.response) | |
| except Exception as e: | |
| st.error(f"Error occurred: {str(e)}") | |