import os from dotenv import load_dotenv from langchain_groq import ChatGroq from langchain_community.tools.tavily_search import TavilySearchResults from langgraph.prebuilt import create_react_agent from langchain_core.messages.ai import AIMessage load_dotenv() GROQ_API_KEY=os.environ.get("GROQ_API_KEY") TAVILY_API_KEY=os.environ.get("TAVILY_API_KEY") groq_llm=ChatGroq(model="llama-3.3-70b-versatile") search_tool=TavilySearchResults(max_results=2) system_prompt="Act as an AI chatbot who is smart and friendly" def get_response_from_ai_agent(llm_id, query, allow_search, system_prompt, provider): if provider=="Groq": llm=ChatGroq(model=llm_id) tools=[TavilySearchResults(max_results=2)] if allow_search else [] agent=create_react_agent( model=llm, tools=tools, state_modifier=system_prompt ) state={"messages": query} response=agent.invoke(state) messages=response.get("messages") ai_messages=[message.content for message in messages if isinstance(message, AIMessage)] return ai_messages[-1]