| import gradio as gr | |
| from transformers import AutoProcessor, AutoModelForCausalLM | |
| from huggingface_hub import hf_hub_download | |
| from PIL import Image | |
| processor = AutoProcessor.from_pretrained("microsoft/git-base-vqav2") | |
| model = AutoModelForCausalLM.from_pretrained("microsoft/git-base-vqav2") | |
| file_path = hf_hub_download(repo_id="Multimodal-Fatima/OK-VQA_train", filename="data", repo_type="dataset") | |
| image = Image.open(file_path).convert("RGB") | |
| pixel_values = processor(images=image, return_tensors="pt").pixel_values | |
| question = "How many people are there?" | |
| input_ids = processor(text=question, add_special_tokens=False).input_ids | |
| input_ids = [processor.tokenizer.cls_token_id] + input_ids | |
| input_ids = torch.tensor(input_ids).unsqueeze(0) | |
| generated_ids = model.generate(pixel_values=pixel_values, input_ids=input_ids, max_length=50) | |
| print(processor.batch_decode(generated_ids, skip_special_tokens=True)) |