Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,25 +1,79 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from transformers import BertTokenizerFast, BertForSequenceClassification
|
| 3 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
model = BertForSequenceClassification.from_pretrained('./ch-sent-check-model')
|
| 6 |
tokenizer = BertTokenizerFast.from_pretrained('./ch-sent-check-model')
|
|
|
|
| 7 |
|
| 8 |
def judge(sentence):
|
| 9 |
input_ids = tokenizer(sentence,return_tensors='pt')['input_ids']
|
| 10 |
out = model(input_ids)
|
| 11 |
logits = out.logits
|
| 12 |
-
|
|
|
|
| 13 |
pred_text = 'Incorrect' if pred == 0 else 'Correct'
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
iface = gr.Interface(
|
| 17 |
fn=judge,
|
| 18 |
inputs=gr.Textbox(
|
| 19 |
label="請輸入一段中文句子來檢測正確性",
|
| 20 |
lines=1,
|
| 21 |
-
value="請注意用字的鄭確性",
|
| 22 |
),
|
| 23 |
-
outputs=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
)
|
| 25 |
iface.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import BertTokenizerFast, BertForSequenceClassification,GPT2LMHeadModel,BartForConditionalGeneration
|
| 3 |
import torch
|
| 4 |
+
import math
|
| 5 |
+
|
| 6 |
+
class CHSentenceSmoothScorer():
|
| 7 |
+
def __init__(self) -> None:
|
| 8 |
+
super().__init__()
|
| 9 |
+
|
| 10 |
+
self.tokenizer = BertTokenizerFast.from_pretrained(
|
| 11 |
+
"fnlp/bart-base-chinese")
|
| 12 |
+
self.model = BartForConditionalGeneration.from_pretrained(
|
| 13 |
+
"fnlp/bart-base-chinese")
|
| 14 |
+
|
| 15 |
+
def __call__(self, sentences):
|
| 16 |
+
input_ids = self.tokenizer.batch_encode_plus(
|
| 17 |
+
sentences, return_tensors='pt',
|
| 18 |
+
padding=True,
|
| 19 |
+
max_length=50,
|
| 20 |
+
truncation='longest_first'
|
| 21 |
+
)['input_ids']
|
| 22 |
+
logits = self.model(input_ids).logits
|
| 23 |
+
|
| 24 |
+
softmax = torch.softmax(logits, dim=-1)
|
| 25 |
+
|
| 26 |
+
out = []
|
| 27 |
+
for i, sentence in enumerate(sentences):
|
| 28 |
+
sent_token_ids = input_ids[i].tolist()
|
| 29 |
+
sent_token_ids = list(
|
| 30 |
+
filter(lambda x: x not in [self.tokenizer.pad_token_id], sent_token_ids))
|
| 31 |
+
ppl = 0.0
|
| 32 |
+
for j, token_id in enumerate(sent_token_ids):
|
| 33 |
+
ppl += math.log(softmax[i][j][token_id].item())
|
| 34 |
+
ppl = -1*(ppl/len(sent_token_ids))
|
| 35 |
+
prob_socre = math.exp(ppl*-1)
|
| 36 |
+
out.append(prob_socre)
|
| 37 |
+
|
| 38 |
+
return out
|
| 39 |
+
|
| 40 |
|
| 41 |
model = BertForSequenceClassification.from_pretrained('./ch-sent-check-model')
|
| 42 |
tokenizer = BertTokenizerFast.from_pretrained('./ch-sent-check-model')
|
| 43 |
+
smooth_scorer = CHSentenceSmoothScorer()
|
| 44 |
|
| 45 |
def judge(sentence):
|
| 46 |
input_ids = tokenizer(sentence,return_tensors='pt')['input_ids']
|
| 47 |
out = model(input_ids)
|
| 48 |
logits = out.logits
|
| 49 |
+
prob = torch.softmax(logits,dim=-1)
|
| 50 |
+
pred = torch.argmax(prob,dim=-1).item()
|
| 51 |
pred_text = 'Incorrect' if pred == 0 else 'Correct'
|
| 52 |
+
|
| 53 |
+
correct_prob = prob[0][1].item()
|
| 54 |
+
pred_text = pred_text + f", score: {round(correct_prob*100,2)}"
|
| 55 |
+
smooth_score = round(smooth_scorer([sentence])[0]*100,2)
|
| 56 |
+
return pred_text,smooth_score
|
| 57 |
|
| 58 |
iface = gr.Interface(
|
| 59 |
fn=judge,
|
| 60 |
inputs=gr.Textbox(
|
| 61 |
label="請輸入一段中文句子來檢測正確性",
|
| 62 |
lines=1,
|
|
|
|
| 63 |
),
|
| 64 |
+
outputs=[
|
| 65 |
+
gr.Textbox(
|
| 66 |
+
label="正確性檢查",
|
| 67 |
+
lines=1
|
| 68 |
+
),
|
| 69 |
+
gr.Textbox(
|
| 70 |
+
label="流暢性檢查",
|
| 71 |
+
lines=1
|
| 72 |
+
)
|
| 73 |
+
],
|
| 74 |
+
examples = [
|
| 75 |
+
'請注意用字的鄭確性',
|
| 76 |
+
'請注意用字的正確性'
|
| 77 |
+
]
|
| 78 |
)
|
| 79 |
iface.launch()
|