Spaces:
Running
Running
initial commit
Browse files- app.py +181 -0
- requirements.txt +5 -0
app.py
ADDED
|
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from PIL import Image
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
import gradio as gr
|
| 6 |
+
|
| 7 |
+
from transformers import (
|
| 8 |
+
AutoImageProcessor,
|
| 9 |
+
AutoModelForImageClassification,
|
| 10 |
+
)
|
| 11 |
+
|
| 12 |
+
# import spaces # ZERO GPU
|
| 13 |
+
|
| 14 |
+
MODEL_NAME = "p1atdev/wd-swinv2-tagger-v3-hf"
|
| 15 |
+
|
| 16 |
+
MODEL_NAMES = {
|
| 17 |
+
"swinv2-v3": "p1atdev/wd-swinv2-tagger-v3-hf",
|
| 18 |
+
}
|
| 19 |
+
|
| 20 |
+
model = AutoModelForImageClassification.from_pretrained(
|
| 21 |
+
MODEL_NAME,
|
| 22 |
+
)
|
| 23 |
+
processor = AutoImageProcessor.from_pretrained(MODEL_NAME, trust_remote_code=True)
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def _people_tag(noun: str, minimum: int = 1, maximum: int = 5):
|
| 27 |
+
return (
|
| 28 |
+
[f"1{noun}"]
|
| 29 |
+
+ [f"{num}{noun}s" for num in range(minimum + 1, maximum + 1)]
|
| 30 |
+
+ [f"{maximum+1}+{noun}s"]
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
PEOPLE_TAGS = (
|
| 35 |
+
_people_tag("girl") + _people_tag("boy") + _people_tag("other") + ["no humans"]
|
| 36 |
+
)
|
| 37 |
+
RATING_MAP = {
|
| 38 |
+
"general": "safe",
|
| 39 |
+
"sensitive": "sensitive",
|
| 40 |
+
"questionable": "nsfw",
|
| 41 |
+
"explicit": "explicit, nsfw",
|
| 42 |
+
}
|
| 43 |
+
|
| 44 |
+
DESCRIPTION_MD = """
|
| 45 |
+
# WD Tagger with 🤗 transformers
|
| 46 |
+
Currently supports the following model(s):
|
| 47 |
+
- [p1atdev/wd-swinv2-tagger-v3-hf](https://huggingface.co/p1atdev/wd-swinv2-tagger-v3-hf)
|
| 48 |
+
|
| 49 |
+
""".strip()
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def postprocess_results(
|
| 53 |
+
results: dict[str, float], general_threshold: float, character_threshold: float
|
| 54 |
+
):
|
| 55 |
+
results = {
|
| 56 |
+
k: v for k, v in sorted(results.items(), key=lambda item: item[1], reverse=True)
|
| 57 |
+
}
|
| 58 |
+
|
| 59 |
+
rating = {}
|
| 60 |
+
character = {}
|
| 61 |
+
general = {}
|
| 62 |
+
|
| 63 |
+
for k, v in results.items():
|
| 64 |
+
if k.startswith("rating:"):
|
| 65 |
+
rating[k.replace("rating:", "")] = v
|
| 66 |
+
continue
|
| 67 |
+
elif k.startswith("character:"):
|
| 68 |
+
character[k.replace("character:", "")] = v
|
| 69 |
+
continue
|
| 70 |
+
|
| 71 |
+
general[k] = v
|
| 72 |
+
|
| 73 |
+
character = {k: v for k, v in character.items() if v >= character_threshold}
|
| 74 |
+
general = {k: v for k, v in general.items() if v >= general_threshold}
|
| 75 |
+
|
| 76 |
+
return rating, character, general
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
def animagine_prompt(rating: list[str], character: list[str], general: list[str]):
|
| 80 |
+
people_tags: list[str] = []
|
| 81 |
+
other_tags: list[str] = []
|
| 82 |
+
rating_tag = RATING_MAP[rating[0]]
|
| 83 |
+
|
| 84 |
+
for tag in general:
|
| 85 |
+
if tag in PEOPLE_TAGS:
|
| 86 |
+
people_tags.append(tag)
|
| 87 |
+
else:
|
| 88 |
+
other_tags.append(tag)
|
| 89 |
+
|
| 90 |
+
all_tags = people_tags + character + other_tags + [rating_tag]
|
| 91 |
+
|
| 92 |
+
return ", ".join(all_tags)
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
# @spaces.GPU
|
| 96 |
+
@torch.no_grad()
|
| 97 |
+
def predict_tags(
|
| 98 |
+
image: Image.Image, general_threshold: float = 0.3, character_threshold: float = 0.8
|
| 99 |
+
):
|
| 100 |
+
inputs = processor.preprocess(image, return_tensors="pt")
|
| 101 |
+
|
| 102 |
+
outputs = model(**inputs.to(model.device, model.dtype))
|
| 103 |
+
logits = torch.sigmoid(outputs.logits[0]) # take the first logits
|
| 104 |
+
|
| 105 |
+
# get probabilities
|
| 106 |
+
results = {
|
| 107 |
+
model.config.id2label[i]: float(logit.float()) for i, logit in enumerate(logits)
|
| 108 |
+
}
|
| 109 |
+
|
| 110 |
+
# rating, character, general
|
| 111 |
+
rating, character, general = postprocess_results(
|
| 112 |
+
results, general_threshold, character_threshold
|
| 113 |
+
)
|
| 114 |
+
|
| 115 |
+
prompt = animagine_prompt(
|
| 116 |
+
list(rating.keys()), list(character.keys()), list(general.keys())
|
| 117 |
+
)
|
| 118 |
+
|
| 119 |
+
return rating, character, general, prompt
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
def demo():
|
| 123 |
+
with gr.Blocks() as ui:
|
| 124 |
+
gr.Markdown(DESCRIPTION_MD)
|
| 125 |
+
|
| 126 |
+
with gr.Row():
|
| 127 |
+
with gr.Column():
|
| 128 |
+
input_image = gr.Image(label="Input image", type="pil")
|
| 129 |
+
|
| 130 |
+
with gr.Group():
|
| 131 |
+
general_threshold = gr.Slider(
|
| 132 |
+
label="Threshold",
|
| 133 |
+
minimum=0.0,
|
| 134 |
+
maximum=1.0,
|
| 135 |
+
value=0.3,
|
| 136 |
+
step=0.01,
|
| 137 |
+
interactive=True,
|
| 138 |
+
)
|
| 139 |
+
character_threshold = gr.Slider(
|
| 140 |
+
label="Character threshold",
|
| 141 |
+
minimum=0.0,
|
| 142 |
+
maximum=1.0,
|
| 143 |
+
value=0.8,
|
| 144 |
+
step=0.01,
|
| 145 |
+
interactive=True,
|
| 146 |
+
)
|
| 147 |
+
|
| 148 |
+
_model_radio = gr.Radio(
|
| 149 |
+
choices=list(MODEL_NAMES.keys()),
|
| 150 |
+
label="Model",
|
| 151 |
+
value=list(MODEL_NAMES.keys())[0],
|
| 152 |
+
)
|
| 153 |
+
|
| 154 |
+
start_btn = gr.Button(value="Start", variant="primary")
|
| 155 |
+
|
| 156 |
+
with gr.Column():
|
| 157 |
+
prompt_text = gr.Text(label="Prompt")
|
| 158 |
+
|
| 159 |
+
rating_tags_label = gr.Label(label="Rating tags")
|
| 160 |
+
character_tags_label = gr.Label(label="Character tags")
|
| 161 |
+
general_tags_label = gr.Label(label="General tags")
|
| 162 |
+
|
| 163 |
+
start_btn.click(
|
| 164 |
+
predict_tags,
|
| 165 |
+
inputs=[input_image, general_threshold, character_threshold],
|
| 166 |
+
outputs=[
|
| 167 |
+
rating_tags_label,
|
| 168 |
+
character_tags_label,
|
| 169 |
+
general_tags_label,
|
| 170 |
+
prompt_text,
|
| 171 |
+
],
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
ui.launch(
|
| 175 |
+
# debug=True,
|
| 176 |
+
# share=True,
|
| 177 |
+
)
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
if __name__ == "__main__":
|
| 181 |
+
demo()
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
torchvision
|
| 3 |
+
accelerate
|
| 4 |
+
transformers==4.38.2
|
| 5 |
+
spaces
|