Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,328 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from PIL import Image
|
| 4 |
+
from transformers import AutoModel, AutoTokenizer
|
| 5 |
+
import numpy as np
|
| 6 |
+
import tempfile
|
| 7 |
+
import os
|
| 8 |
+
from decord import VideoReader, cpu
|
| 9 |
+
from scipy.spatial import cKDTree
|
| 10 |
+
import math
|
| 11 |
+
import warnings
|
| 12 |
+
warnings.filterwarnings("ignore")
|
| 13 |
+
|
| 14 |
+
# Global variables for model and tokenizer
|
| 15 |
+
model = None
|
| 16 |
+
tokenizer = None
|
| 17 |
+
|
| 18 |
+
def load_model():
|
| 19 |
+
"""Load the MiniCPM-V-4.5 model and tokenizer"""
|
| 20 |
+
global model, tokenizer
|
| 21 |
+
|
| 22 |
+
if model is None:
|
| 23 |
+
print("Loading MiniCPM-V-4.5 model...")
|
| 24 |
+
model = AutoModel.from_pretrained(
|
| 25 |
+
'openbmb/MiniCPM-V-4_5',
|
| 26 |
+
trust_remote_code=True,
|
| 27 |
+
attn_implementation='sdpa',
|
| 28 |
+
torch_dtype=torch.bfloat16,
|
| 29 |
+
device_map="auto"
|
| 30 |
+
)
|
| 31 |
+
model = model.eval()
|
| 32 |
+
|
| 33 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 34 |
+
'openbmb/MiniCPM-V-4_5',
|
| 35 |
+
trust_remote_code=True
|
| 36 |
+
)
|
| 37 |
+
print("Model loaded successfully!")
|
| 38 |
+
|
| 39 |
+
return model, tokenizer
|
| 40 |
+
|
| 41 |
+
def map_to_nearest_scale(values, scale):
|
| 42 |
+
"""Map values to nearest scale for temporal IDs"""
|
| 43 |
+
tree = cKDTree(np.asarray(scale)[:, None])
|
| 44 |
+
_, indices = tree.query(np.asarray(values)[:, None])
|
| 45 |
+
return np.asarray(scale)[indices]
|
| 46 |
+
|
| 47 |
+
def group_array(arr, size):
|
| 48 |
+
"""Group array into chunks of specified size"""
|
| 49 |
+
return [arr[i:i+size] for i in range(0, len(arr), size)]
|
| 50 |
+
|
| 51 |
+
def uniform_sample(l, n):
|
| 52 |
+
"""Uniformly sample n items from list l"""
|
| 53 |
+
gap = len(l) / n
|
| 54 |
+
idxs = [int(i * gap + gap / 2) for i in range(n)]
|
| 55 |
+
return [l[i] for i in idxs]
|
| 56 |
+
|
| 57 |
+
def encode_video(video_path, choose_fps=3, max_frames=180, max_packing=3, time_scale=0.1):
|
| 58 |
+
"""Encode video frames with temporal IDs for the model"""
|
| 59 |
+
vr = VideoReader(video_path, ctx=cpu(0))
|
| 60 |
+
fps = vr.get_avg_fps()
|
| 61 |
+
video_duration = len(vr) / fps
|
| 62 |
+
|
| 63 |
+
if choose_fps * int(video_duration) <= max_frames:
|
| 64 |
+
packing_nums = 1
|
| 65 |
+
choose_frames = round(min(choose_fps, round(fps)) * min(max_frames, video_duration))
|
| 66 |
+
else:
|
| 67 |
+
packing_nums = math.ceil(video_duration * choose_fps / max_frames)
|
| 68 |
+
if packing_nums <= max_packing:
|
| 69 |
+
choose_frames = round(video_duration * choose_fps)
|
| 70 |
+
else:
|
| 71 |
+
choose_frames = round(max_frames * max_packing)
|
| 72 |
+
packing_nums = max_packing
|
| 73 |
+
|
| 74 |
+
frame_idx = [i for i in range(0, len(vr))]
|
| 75 |
+
frame_idx = np.array(uniform_sample(frame_idx, choose_frames))
|
| 76 |
+
|
| 77 |
+
print(f'Video duration: {video_duration:.2f}s, frames: {len(frame_idx)}, packing: {packing_nums}')
|
| 78 |
+
|
| 79 |
+
frames = vr.get_batch(frame_idx).asnumpy()
|
| 80 |
+
frame_idx_ts = frame_idx / fps
|
| 81 |
+
scale = np.arange(0, video_duration, time_scale)
|
| 82 |
+
frame_ts_id = map_to_nearest_scale(frame_idx_ts, scale) / time_scale
|
| 83 |
+
frame_ts_id = frame_ts_id.astype(np.int32)
|
| 84 |
+
|
| 85 |
+
frames = [Image.fromarray(v.astype('uint8')).convert('RGB') for v in frames]
|
| 86 |
+
frame_ts_id_group = group_array(frame_ts_id, packing_nums)
|
| 87 |
+
|
| 88 |
+
return frames, frame_ts_id_group
|
| 89 |
+
|
| 90 |
+
def process_input(
|
| 91 |
+
file_input,
|
| 92 |
+
user_prompt,
|
| 93 |
+
system_prompt,
|
| 94 |
+
fps,
|
| 95 |
+
context_size,
|
| 96 |
+
temperature,
|
| 97 |
+
enable_thinking
|
| 98 |
+
):
|
| 99 |
+
"""Process user input and generate response"""
|
| 100 |
+
try:
|
| 101 |
+
# Load model if not already loaded
|
| 102 |
+
model, tokenizer = load_model()
|
| 103 |
+
|
| 104 |
+
if file_input is None:
|
| 105 |
+
return "Please upload an image or video file."
|
| 106 |
+
|
| 107 |
+
# Determine if input is image or video
|
| 108 |
+
file_path = file_input.name if hasattr(file_input, 'name') else file_input
|
| 109 |
+
file_ext = os.path.splitext(file_path)[1].lower()
|
| 110 |
+
|
| 111 |
+
is_video = file_ext in ['.mp4', '.avi', '.mov', '.mkv', '.webm', '.m4v']
|
| 112 |
+
|
| 113 |
+
# Prepare messages
|
| 114 |
+
msgs = []
|
| 115 |
+
|
| 116 |
+
# Add system prompt if provided
|
| 117 |
+
if system_prompt and system_prompt.strip():
|
| 118 |
+
msgs.append({'role': 'system', 'content': system_prompt.strip()})
|
| 119 |
+
|
| 120 |
+
if is_video:
|
| 121 |
+
# Process video
|
| 122 |
+
frames, frame_ts_id_group = encode_video(file_path, choose_fps=fps)
|
| 123 |
+
msgs.append({'role': 'user', 'content': frames + [user_prompt]})
|
| 124 |
+
|
| 125 |
+
# Generate response for video
|
| 126 |
+
answer = model.chat(
|
| 127 |
+
msgs=msgs,
|
| 128 |
+
tokenizer=tokenizer,
|
| 129 |
+
use_image_id=False,
|
| 130 |
+
max_slice_nums=1,
|
| 131 |
+
temporal_ids=frame_ts_id_group,
|
| 132 |
+
enable_thinking=enable_thinking,
|
| 133 |
+
max_new_tokens=context_size,
|
| 134 |
+
temperature=temperature
|
| 135 |
+
)
|
| 136 |
+
else:
|
| 137 |
+
# Process image
|
| 138 |
+
image = Image.open(file_path).convert('RGB')
|
| 139 |
+
msgs.append({'role': 'user', 'content': [image, user_prompt]})
|
| 140 |
+
|
| 141 |
+
# Generate response for image
|
| 142 |
+
answer = model.chat(
|
| 143 |
+
msgs=msgs,
|
| 144 |
+
tokenizer=tokenizer,
|
| 145 |
+
enable_thinking=enable_thinking,
|
| 146 |
+
max_new_tokens=context_size,
|
| 147 |
+
temperature=temperature
|
| 148 |
+
)
|
| 149 |
+
|
| 150 |
+
return answer
|
| 151 |
+
|
| 152 |
+
except Exception as e:
|
| 153 |
+
return f"Error processing input: {str(e)}"
|
| 154 |
+
|
| 155 |
+
def create_interface():
|
| 156 |
+
"""Create and configure Gradio interface"""
|
| 157 |
+
|
| 158 |
+
with gr.Blocks(title="MiniCPM-V-4.5 Multimodal Chat", theme=gr.themes.Soft()) as iface:
|
| 159 |
+
gr.Markdown("""
|
| 160 |
+
# π MiniCPM-V-4.5 Multimodal Chat
|
| 161 |
+
|
| 162 |
+
A powerful 8B parameter multimodal model that can understand images and videos with GPT-4V level performance.
|
| 163 |
+
|
| 164 |
+
**Features:**
|
| 165 |
+
- πΈ Single/Multi-image understanding
|
| 166 |
+
- π₯ High refresh rate video understanding (up to 10 FPS)
|
| 167 |
+
- π Strong OCR and document parsing
|
| 168 |
+
- π§ Controllable fast/deep thinking mode
|
| 169 |
+
- π Multilingual support (30+ languages)
|
| 170 |
+
""")
|
| 171 |
+
|
| 172 |
+
with gr.Row():
|
| 173 |
+
with gr.Column(scale=1):
|
| 174 |
+
# File input
|
| 175 |
+
file_input = gr.File(
|
| 176 |
+
label="Upload Image or Video",
|
| 177 |
+
file_types=["image", "video"],
|
| 178 |
+
type="filepath"
|
| 179 |
+
)
|
| 180 |
+
|
| 181 |
+
# Video FPS setting
|
| 182 |
+
fps_slider = gr.Slider(
|
| 183 |
+
minimum=1,
|
| 184 |
+
maximum=30,
|
| 185 |
+
value=5,
|
| 186 |
+
step=1,
|
| 187 |
+
label="Video FPS",
|
| 188 |
+
info="Frames per second for video processing (only applies to videos)"
|
| 189 |
+
)
|
| 190 |
+
|
| 191 |
+
# Context size
|
| 192 |
+
context_size = gr.Slider(
|
| 193 |
+
minimum=512,
|
| 194 |
+
maximum=4096,
|
| 195 |
+
value=2048,
|
| 196 |
+
step=256,
|
| 197 |
+
label="Max Output Tokens",
|
| 198 |
+
info="Maximum number of tokens to generate"
|
| 199 |
+
)
|
| 200 |
+
|
| 201 |
+
# Temperature
|
| 202 |
+
temperature = gr.Slider(
|
| 203 |
+
minimum=0.1,
|
| 204 |
+
maximum=2.0,
|
| 205 |
+
value=0.7,
|
| 206 |
+
step=0.1,
|
| 207 |
+
label="Temperature",
|
| 208 |
+
info="Controls randomness in generation"
|
| 209 |
+
)
|
| 210 |
+
|
| 211 |
+
# Thinking mode
|
| 212 |
+
enable_thinking = gr.Checkbox(
|
| 213 |
+
label="Enable Deep Thinking",
|
| 214 |
+
value=False,
|
| 215 |
+
info="Enable deep thinking mode for complex problem solving"
|
| 216 |
+
)
|
| 217 |
+
|
| 218 |
+
with gr.Column(scale=2):
|
| 219 |
+
# System prompt
|
| 220 |
+
system_prompt = gr.Textbox(
|
| 221 |
+
label="System Prompt (Optional)",
|
| 222 |
+
placeholder="Enter system instructions here...",
|
| 223 |
+
lines=3,
|
| 224 |
+
info="Set the behavior and context for the model"
|
| 225 |
+
)
|
| 226 |
+
|
| 227 |
+
# User prompt
|
| 228 |
+
user_prompt = gr.Textbox(
|
| 229 |
+
label="Your Question",
|
| 230 |
+
placeholder="Describe what you see in the image/video, or ask a specific question...",
|
| 231 |
+
lines=4
|
| 232 |
+
)
|
| 233 |
+
|
| 234 |
+
# Submit button
|
| 235 |
+
submit_btn = gr.Button("π Generate Response", variant="primary", size="lg")
|
| 236 |
+
|
| 237 |
+
# Output
|
| 238 |
+
output = gr.Textbox(
|
| 239 |
+
label="Model Response",
|
| 240 |
+
lines=15,
|
| 241 |
+
max_lines=25,
|
| 242 |
+
show_copy_button=True
|
| 243 |
+
)
|
| 244 |
+
|
| 245 |
+
# Examples
|
| 246 |
+
gr.Markdown("## π‘ Example Prompts")
|
| 247 |
+
gr.Examples(
|
| 248 |
+
examples=[
|
| 249 |
+
["What objects do you see in this image?"],
|
| 250 |
+
["Describe the scene in detail."],
|
| 251 |
+
["What is the main action happening in this video?"],
|
| 252 |
+
["Read and transcribe any text visible in the image."],
|
| 253 |
+
["What emotions or mood does this image convey?"],
|
| 254 |
+
["Analyze the composition and visual elements."],
|
| 255 |
+
["What might happen next in this sequence?"]
|
| 256 |
+
],
|
| 257 |
+
inputs=[user_prompt],
|
| 258 |
+
label="Click any example to use it"
|
| 259 |
+
)
|
| 260 |
+
|
| 261 |
+
# Event handlers
|
| 262 |
+
submit_btn.click(
|
| 263 |
+
fn=process_input,
|
| 264 |
+
inputs=[
|
| 265 |
+
file_input,
|
| 266 |
+
user_prompt,
|
| 267 |
+
system_prompt,
|
| 268 |
+
fps_slider,
|
| 269 |
+
context_size,
|
| 270 |
+
temperature,
|
| 271 |
+
enable_thinking
|
| 272 |
+
],
|
| 273 |
+
outputs=output,
|
| 274 |
+
show_progress=True
|
| 275 |
+
)
|
| 276 |
+
|
| 277 |
+
# Also allow Enter key submission
|
| 278 |
+
user_prompt.submit(
|
| 279 |
+
fn=process_input,
|
| 280 |
+
inputs=[
|
| 281 |
+
file_input,
|
| 282 |
+
user_prompt,
|
| 283 |
+
system_prompt,
|
| 284 |
+
fps_slider,
|
| 285 |
+
context_size,
|
| 286 |
+
temperature,
|
| 287 |
+
enable_thinking
|
| 288 |
+
],
|
| 289 |
+
outputs=output,
|
| 290 |
+
show_progress=True
|
| 291 |
+
)
|
| 292 |
+
|
| 293 |
+
# Information section
|
| 294 |
+
with gr.Accordion("π Model Information", open=False):
|
| 295 |
+
gr.Markdown("""
|
| 296 |
+
### MiniCPM-V-4.5 Specifications
|
| 297 |
+
|
| 298 |
+
- **Parameters**: 8B (Qwen3-8B + SigLIP2-400M)
|
| 299 |
+
- **Video Compression**: 96x compression rate (6 frames β 64 tokens)
|
| 300 |
+
- **Max Resolution**: Up to 1.8M pixels (1344x1344)
|
| 301 |
+
- **Languages**: 30+ languages supported
|
| 302 |
+
- **Performance**: Surpasses GPT-4o-latest on multiple benchmarks
|
| 303 |
+
|
| 304 |
+
### Usage Tips
|
| 305 |
+
|
| 306 |
+
1. **For Images**: Upload any image format and ask questions about content, objects, text, or analysis
|
| 307 |
+
2. **For Videos**: Adjust FPS based on video content (higher FPS for action, lower for static scenes)
|
| 308 |
+
3. **System Prompt**: Use to set specific roles like "You are an expert art critic" or "Analyze this from a medical perspective"
|
| 309 |
+
4. **Deep Thinking**: Enable for complex reasoning tasks, analysis, or problem-solving
|
| 310 |
+
5. **Temperature**: Lower (0.1-0.3) for factual responses, higher (0.7-1.0) for creative outputs
|
| 311 |
+
|
| 312 |
+
### Supported Formats
|
| 313 |
+
- **Images**: JPG, PNG, JPEG, BMP, GIF, WEBP
|
| 314 |
+
- **Videos**: MP4, AVI, MOV, MKV, WEBM, M4V
|
| 315 |
+
""")
|
| 316 |
+
|
| 317 |
+
return iface
|
| 318 |
+
|
| 319 |
+
if __name__ == "__main__":
|
| 320 |
+
# Create and launch interface
|
| 321 |
+
demo = create_interface()
|
| 322 |
+
demo.queue(max_size=20)
|
| 323 |
+
demo.launch(
|
| 324 |
+
share=True,
|
| 325 |
+
server_name="0.0.0.0",
|
| 326 |
+
server_port=7860,
|
| 327 |
+
show_error=True
|
| 328 |
+
)
|