Spaces:
Sleeping
Sleeping
Orion Weller
commited on
Commit
·
68f913d
1
Parent(s):
d2c1af1
basic working
Browse files- app.py +244 -2
- requirements.txt +4 -0
app.py
CHANGED
|
@@ -1,4 +1,246 @@
|
|
| 1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
x = st.slider('Select a value')
|
| 4 |
-
st.write(x, 'squared is', x * x)
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
import os
|
| 3 |
+
import pathlib
|
| 4 |
+
import beir
|
| 5 |
+
from beir import util
|
| 6 |
+
from beir.datasets.data_loader import GenericDataLoader
|
| 7 |
+
import pytrec_eval
|
| 8 |
+
import pandas as pd
|
| 9 |
+
from collections import defaultdict
|
| 10 |
+
import json
|
| 11 |
+
import copy
|
| 12 |
+
|
| 13 |
+
def load_jsonl(f):
|
| 14 |
+
did2text = defaultdict(list)
|
| 15 |
+
sub_did2text = {}
|
| 16 |
+
|
| 17 |
+
for idx, line in enumerate(f):
|
| 18 |
+
inst = json.loads(line)
|
| 19 |
+
if "question" in inst:
|
| 20 |
+
docid = inst["metadata"][0]["passage_id"] if "doc_id" not in inst else inst["doc_id"]
|
| 21 |
+
did2text[docid].append(inst["question"])
|
| 22 |
+
elif "text" in inst:
|
| 23 |
+
docid = inst["doc_id"] if "doc_id" in inst else inst["did"]
|
| 24 |
+
did2text[docid].append(inst["text"])
|
| 25 |
+
sub_did2text[inst["did"]] = inst["text"]
|
| 26 |
+
elif "query" in inst:
|
| 27 |
+
docid = inst["doc_id"] if "doc_id" in inst else inst["did"]
|
| 28 |
+
did2text[docid].append(inst["query"])
|
| 29 |
+
else:
|
| 30 |
+
breakpoint()
|
| 31 |
+
raise NotImplementedError("Need to handle this case")
|
| 32 |
+
|
| 33 |
+
return did2text, sub_did2text
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def get_beir(dataset_name: str):
|
| 38 |
+
dataset = "scifact"
|
| 39 |
+
url = "https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/{}.zip".format(dataset)
|
| 40 |
+
out_dir = os.path.join(pathlib.Path(__file__).parent.absolute(), "datasets")
|
| 41 |
+
data_path = util.download_and_unzip(url, out_dir)
|
| 42 |
+
return GenericDataLoader(data_folder=data_path).load(split="test")
|
| 43 |
+
|
| 44 |
+
def load_run(f_run):
|
| 45 |
+
run = pytrec_eval.parse_run(copy.deepcopy(f_run))
|
| 46 |
+
# convert bytes to strings for keys
|
| 47 |
+
new_run = defaultdict(dict)
|
| 48 |
+
for key, sub_dict in run.items():
|
| 49 |
+
new_run[key.decode("utf-8")] = {k.decode("utf-8"): v for k, v in sub_dict.items()}
|
| 50 |
+
|
| 51 |
+
run_pandas = pd.read_csv(f_run, header=None, index_col=None, sep="\t")
|
| 52 |
+
run_pandas.columns = ["qid", "generic", "doc_id", "rank", "score", "model"]
|
| 53 |
+
run_pandas.doc_id = run_pandas.doc_id.astype(str)
|
| 54 |
+
run_pandas.qid = run_pandas.qid.astype(str)
|
| 55 |
+
run_pandas["rank"] = run_pandas["rank"].astype(int)
|
| 56 |
+
run_pandas.score = run_pandas.score.astype(float)
|
| 57 |
+
# if run_1_alt is not None:
|
| 58 |
+
# run_1_alt, run_1_alt_sub = load_jsonl(run_1_alt)
|
| 59 |
+
return new_run, run_pandas
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
with st.sidebar:
|
| 63 |
+
dataset_name = st.selectbox("Select a dataset in BEIR", ("scifact", "trec-covid", "fever"))
|
| 64 |
+
metric_name = st.selectbox("Select a metric", ("recall_5", "recall_10"))
|
| 65 |
+
# sliderbar of how many Top N to choose
|
| 66 |
+
top_n = st.slider("Top N", 1, 100, 3)
|
| 67 |
+
x = st.header('Upload a run file')
|
| 68 |
+
run1_file = st.file_uploader("Choose a file", key="run1")
|
| 69 |
+
y = st.header("Upload a second run file")
|
| 70 |
+
run2_file = st.file_uploader("Choose a file", key="run2")
|
| 71 |
+
incorrect_only = st.checkbox("Show only incorrect instances", value=False)
|
| 72 |
+
one_better_than_two = st.checkbox("Show only instances where run 1 is better than run 2", value=False)
|
| 73 |
+
two_better_than_one = st.checkbox("Show only instances where run 2 is better than run 1", value=False)
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
corpus, queries, qrels = get_beir(dataset_name)
|
| 80 |
+
|
| 81 |
+
evaluator = pytrec_eval.RelevanceEvaluator(
|
| 82 |
+
qrels, pytrec_eval.supported_measures)
|
| 83 |
+
|
| 84 |
+
if run1_file is not None:
|
| 85 |
+
run1, run1_pandas = load_run(run1_file)
|
| 86 |
+
results1 = evaluator.evaluate(run1) # dict of instance then metrics then values
|
| 87 |
+
|
| 88 |
+
if run2_file is not None:
|
| 89 |
+
run2, run2_pandas = load_run(run2_file)
|
| 90 |
+
results2 = evaluator.evaluate(run2)
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
col1, col2 = st.columns([1, 2], gap="medium")
|
| 94 |
+
|
| 95 |
+
incorrect = 0
|
| 96 |
+
is_better_run1_count = 0
|
| 97 |
+
is_better_run2_count = 0
|
| 98 |
+
with col1:
|
| 99 |
+
st.title("Instances")
|
| 100 |
+
if run1_file is not None:
|
| 101 |
+
name_of_columns = ["Overview"] + sorted([int(item) for item in set(run1_pandas.qid.tolist())])
|
| 102 |
+
checkboxes = [("Overview", st.checkbox("Overview", key=f"0overview"))]
|
| 103 |
+
st.divider()
|
| 104 |
+
for idx in range(len(name_of_columns)):
|
| 105 |
+
if not idx:
|
| 106 |
+
continue
|
| 107 |
+
is_incorrect = False
|
| 108 |
+
is_better_run1 = False
|
| 109 |
+
is_better_run2 = False
|
| 110 |
+
|
| 111 |
+
run1_score = results1[str(name_of_columns[idx])][metric_name] if idx else 1
|
| 112 |
+
if run2_file is not None:
|
| 113 |
+
run2_score = results2[str(name_of_columns[idx])][metric_name] if idx else 1
|
| 114 |
+
|
| 115 |
+
if idx and run1_score == 0 or run2_score == 0:
|
| 116 |
+
incorrect += 1
|
| 117 |
+
is_incorrect = True
|
| 118 |
+
|
| 119 |
+
if idx and run1_score > run2_score:
|
| 120 |
+
is_better_run1_count += 1
|
| 121 |
+
is_better_run1 = True
|
| 122 |
+
elif idx and run2_score > run1_score:
|
| 123 |
+
is_better_run2_count += 1
|
| 124 |
+
is_better_run2 = True
|
| 125 |
+
|
| 126 |
+
if not incorrect_only or is_incorrect:
|
| 127 |
+
if not one_better_than_two or is_better_run1:
|
| 128 |
+
if not two_better_than_one or is_better_run2:
|
| 129 |
+
check = st.checkbox(str(name_of_columns[idx]), key=f"{idx}check")
|
| 130 |
+
st.divider()
|
| 131 |
+
checkboxes.append((name_of_columns[idx], check))
|
| 132 |
+
else:
|
| 133 |
+
if idx and run1_score == 0:
|
| 134 |
+
incorrect += 1
|
| 135 |
+
is_incorrect = True
|
| 136 |
+
|
| 137 |
+
if not incorrect_only or is_incorrect:
|
| 138 |
+
check = st.checkbox(str(name_of_columns[idx]), key=f"{idx}check")
|
| 139 |
+
st.divider()
|
| 140 |
+
checkboxes.append((name_of_columns[idx], check))
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
with col2:
|
| 144 |
+
st.title(f"Information ({len(checkboxes) - 1}/{len(name_of_columns) - 1})")
|
| 145 |
+
### Only one run file
|
| 146 |
+
if run1_file is not None and run2_file is None:
|
| 147 |
+
for check_idx, (inst_num, checkbox) in enumerate(checkboxes):
|
| 148 |
+
if checkbox:
|
| 149 |
+
if inst_num == "Overview":
|
| 150 |
+
st.header("Overview")
|
| 151 |
+
st.markdown("TODO: Add overview")
|
| 152 |
+
else:
|
| 153 |
+
st.header(f"Instance Number: {inst_num}")
|
| 154 |
+
|
| 155 |
+
st.subheader(f"Query")
|
| 156 |
+
query_text = queries[str(inst_num)]
|
| 157 |
+
st.markdown(query_text)
|
| 158 |
+
st.divider()
|
| 159 |
+
|
| 160 |
+
## Documents
|
| 161 |
+
# relevant
|
| 162 |
+
relevant_docs = list(qrels[str(inst_num)].keys())
|
| 163 |
+
doc_texts = [(doc_id, corpus[doc_id]["title"], corpus[doc_id]["text"]) for doc_id in relevant_docs]
|
| 164 |
+
st.subheader("Relevant Documents")
|
| 165 |
+
for (docid, title, text) in doc_texts:
|
| 166 |
+
st.text_area(f"{docid}: {title}", text)
|
| 167 |
+
|
| 168 |
+
# top ranked
|
| 169 |
+
pred_doc = run1_pandas[run1_pandas.doc_id.isin(relevant_docs)]
|
| 170 |
+
rank_pred = pred_doc[pred_doc.qid == str(inst_num)]["rank"].tolist()
|
| 171 |
+
st.subheader("Ranked of Documents")
|
| 172 |
+
st.markdown(f"Rank: {rank_pred}")
|
| 173 |
+
|
| 174 |
+
st.divider()
|
| 175 |
+
|
| 176 |
+
if st.checkbox('Show top ranked documents'):
|
| 177 |
+
st.subheader("Top N Ranked Documents")
|
| 178 |
+
run1_top_n = run1_pandas[run1_pandas.qid == str(inst_num)][:top_n]
|
| 179 |
+
run1_top_n_docs = [corpus[str(doc_id)] for doc_id in run1_top_n.doc_id.tolist()]
|
| 180 |
+
for d_idx, doc in enumerate(run1_top_n_docs):
|
| 181 |
+
st.text_area(f"{run1_top_n['doc_id'].iloc[d_idx]}: {doc['title']}", doc["text"])
|
| 182 |
+
st.divider()
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
st.subheader("Score")
|
| 186 |
+
st.markdown(f"{results1[str(inst_num)][metric_name]}")
|
| 187 |
+
break
|
| 188 |
+
|
| 189 |
+
## Both run files available
|
| 190 |
+
elif run1_file is not None and run2_file is not None:
|
| 191 |
+
for check_idx, (inst_num, checkbox) in enumerate(checkboxes):
|
| 192 |
+
if checkbox:
|
| 193 |
+
if inst_num == "Overview":
|
| 194 |
+
st.header("Overview")
|
| 195 |
+
st.markdown("TODO: Add overview")
|
| 196 |
+
else:
|
| 197 |
+
st.header(f"Instance Number: {inst_num}")
|
| 198 |
+
|
| 199 |
+
st.subheader(f"Query")
|
| 200 |
+
query_text = queries[str(inst_num)]
|
| 201 |
+
st.markdown(query_text)
|
| 202 |
+
st.divider()
|
| 203 |
+
|
| 204 |
+
## Documents
|
| 205 |
+
# relevant
|
| 206 |
+
relevant_docs = list(qrels[str(inst_num)].keys())
|
| 207 |
+
doc_texts = [(doc_id, corpus[doc_id]["title"], corpus[doc_id]["text"]) for doc_id in relevant_docs]
|
| 208 |
+
st.subheader("Relevant Documents")
|
| 209 |
+
for (docid, title, text) in doc_texts:
|
| 210 |
+
st.text_area(f"{docid}: {title}", text)
|
| 211 |
+
|
| 212 |
+
# top ranked
|
| 213 |
+
pred_doc1 = run1_pandas[run1_pandas.doc_id.isin(relevant_docs)]
|
| 214 |
+
rank_pred1 = pred_doc1[pred_doc1.qid == str(inst_num)]["rank"].tolist()
|
| 215 |
+
pred_doc2 = run2_pandas[run2_pandas.doc_id.isin(relevant_docs)]
|
| 216 |
+
rank_pred2 = pred_doc2[pred_doc2.qid == str(inst_num)]["rank"].tolist()
|
| 217 |
+
st.subheader("Ranked of Documents")
|
| 218 |
+
st.markdown(f"Run 1 Rank: {rank_pred1}")
|
| 219 |
+
st.markdown(f"Run 2 Rank: {rank_pred2}")
|
| 220 |
+
|
| 221 |
+
|
| 222 |
+
st.divider()
|
| 223 |
+
|
| 224 |
+
if st.checkbox('Show top ranked documents for Run 1'):
|
| 225 |
+
st.subheader("Top N Ranked Documents")
|
| 226 |
+
run1_top_n = run1_pandas[run1_pandas.qid == str(inst_num)][:top_n]
|
| 227 |
+
run1_top_n_docs = [corpus[str(doc_id)] for doc_id in run1_top_n.doc_id.tolist()]
|
| 228 |
+
for d_idx, doc in enumerate(run1_top_n_docs):
|
| 229 |
+
st.text_area(f"{run1_top_n['doc_id'].iloc[d_idx]}: {doc['title']}", doc["text"])
|
| 230 |
+
|
| 231 |
+
if st.checkbox('Show top ranked documents for Run 2'):
|
| 232 |
+
st.subheader("Top N Ranked Documents")
|
| 233 |
+
run2_top_n = run2_pandas[run2_pandas.qid == str(inst_num)][:top_n]
|
| 234 |
+
run2_top_n_docs = [corpus[str(doc_id)] for doc_id in run2_top_n.doc_id.tolist()]
|
| 235 |
+
for d_idx, doc in enumerate(run2_top_n_docs):
|
| 236 |
+
st.text_area(f"{run2_top_n['doc_id'].iloc[d_idx]}: {doc['title']}", doc["text"])
|
| 237 |
+
|
| 238 |
+
st.divider()
|
| 239 |
+
|
| 240 |
+
|
| 241 |
+
st.subheader("Scores")
|
| 242 |
+
st.markdown(f"Run 1: {results1[str(inst_num)][metric_name]}")
|
| 243 |
+
st.markdown(f"Run 2: {results2[str(inst_num)][metric_name]}")
|
| 244 |
+
|
| 245 |
+
break
|
| 246 |
|
|
|
|
|
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
beir
|
| 2 |
+
pandas
|
| 3 |
+
pytrec_eval
|
| 4 |
+
streamlit
|