Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| import os | |
| import pathlib | |
| import beir | |
| from beir import util | |
| from beir.datasets.data_loader import GenericDataLoader | |
| import pytrec_eval | |
| import pandas as pd | |
| from collections import defaultdict | |
| import json | |
| import copy | |
| import ir_datasets | |
| from constants import BEIR, IR_DATASETS, LOCAL_DATASETS | |
| def load_local_corpus(corpus_file, columns_to_combine=["title", "text"]): | |
| if corpus_file is None: | |
| return None | |
| did2text = {} | |
| id_key = "_id" | |
| with corpus_file as f: | |
| for idx, line in enumerate(f): | |
| uses_bytes = not (type(line) == str) | |
| if uses_bytes: | |
| if idx == 0 and "doc_id" in line.decode("utf-8"): | |
| continue | |
| inst = json.loads(line.decode("utf-8")) | |
| else: | |
| if idx == 0 and "doc_id" in line: | |
| continue | |
| inst = json.loads(line) | |
| all_text = " ".join([inst[col] for col in columns_to_combine if col in inst]) | |
| if id_key not in inst: | |
| id_key = "doc_id" | |
| did2text[inst[id_key]] = { | |
| "text": all_text, | |
| "title": inst["title"] if "title" in inst else "", | |
| } | |
| return did2text | |
| def load_local_queries(queries_file): | |
| if queries_file is None: | |
| return None | |
| qid2text = {} | |
| id_key = "_id" | |
| with queries_file as f: | |
| for idx, line in enumerate(f): | |
| uses_bytes = not (type(line) == str) | |
| if uses_bytes: | |
| if idx == 0 and "query_id" in line.decode("utf-8"): | |
| continue | |
| inst = json.loads(line.decode("utf-8")) | |
| else: | |
| if idx == 0 and "query_id" in line: | |
| continue | |
| inst = json.loads(line) | |
| if id_key not in inst: | |
| id_key = "query_id" | |
| qid2text[inst[id_key]] = inst["text"] | |
| return qid2text | |
| def load_local_qrels(qrels_file): | |
| if qrels_file is None: | |
| return None | |
| qid2did2label = defaultdict(dict) | |
| with qrels_file as f: | |
| for idx, line in enumerate(f): | |
| uses_bytes = not (type(line) == str) | |
| if uses_bytes: | |
| if idx == 0 and "qid" in line.decode("utf-8") or "query-id" in line.decode("utf-8"): | |
| continue | |
| cur_line = line.decode("utf-8") | |
| else: | |
| if idx == 0 and "qid" in line or "query-id" in line: | |
| continue | |
| cur_line = line | |
| try: | |
| qid, _, doc_id, label = cur_line.split() | |
| except: | |
| qid, doc_id, label = cur_line.split() | |
| qid2did2label[str(qid)][str(doc_id)] = int(label) | |
| return qid2did2label | |
| def load_run(f_run): | |
| run = pytrec_eval.parse_run(copy.deepcopy(f_run)) | |
| # convert bytes to strings for keys | |
| new_run = defaultdict(dict) | |
| for key, sub_dict in run.items(): | |
| new_run[key.decode("utf-8")] = {k.decode("utf-8"): v for k, v in sub_dict.items()} | |
| run_pandas = pd.read_csv(f_run, header=None, index_col=None, sep="\t") | |
| run_pandas.columns = ["qid", "generic", "doc_id", "rank", "score", "model"] | |
| run_pandas.doc_id = run_pandas.doc_id.astype(str) | |
| run_pandas.qid = run_pandas.qid.astype(str) | |
| run_pandas["rank"] = run_pandas["rank"].astype(int) | |
| run_pandas.score = run_pandas.score.astype(float) | |
| # if run_1_alt is not None: | |
| # run_1_alt, run_1_alt_sub = load_jsonl(run_1_alt) | |
| return new_run, run_pandas | |
| def load_jsonl(f): | |
| did2text = defaultdict(list) | |
| sub_did2text = {} | |
| for idx, line in enumerate(f): | |
| inst = json.loads(line) | |
| if "question" in inst: | |
| docid = inst["metadata"][0]["passage_id"] if "doc_id" not in inst else inst["doc_id"] | |
| did2text[docid].append(inst["question"]) | |
| elif "text" in inst: | |
| docid = inst["doc_id"] if "doc_id" in inst else inst["did"] | |
| did2text[docid].append(inst["text"]) | |
| sub_did2text[inst["did"]] = inst["text"] | |
| elif "query" in inst: | |
| docid = inst["doc_id"] if "doc_id" in inst else inst["did"] | |
| did2text[docid].append(inst["query"]) | |
| else: | |
| breakpoint() | |
| raise NotImplementedError("Need to handle this case") | |
| return did2text, sub_did2text | |
| def get_beir(dataset: str): | |
| url = "https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/{}.zip".format(dataset) | |
| out_dir = os.path.join(pathlib.Path(__file__).parent.absolute(), "datasets") | |
| data_path = util.download_and_unzip(url, out_dir) | |
| return GenericDataLoader(data_folder=data_path).load(split="test") | |
| def get_ir_datasets(dataset_name: str): | |
| dataset = ir_datasets.load(dataset_name) | |
| queries = {} | |
| for qid, query in dataset.queries_iter(): | |
| queries[qid] = query | |
| # corpus = {} | |
| # for doc in dataset.docs_iter(): | |
| # return corpus, queries, qrels | |
| return dataset.doc_store(), queries, dataset.qrels_dict() | |
| def get_dataset(dataset_name: str): | |
| if dataset_name == "": | |
| return {}, {}, {} | |
| if dataset_name in BEIR: | |
| return get_beir(dataset_name) | |
| elif dataset_name in IR_DATASETS: | |
| return get_ir_datasets(dataset_name) | |
| elif dataset_name in LOCAL_DATASETS: | |
| base_path = f"local_datasets/{dataset_name}" | |
| corpus_file = open(f"{base_path}/corpus.jsonl", "r") | |
| queries_file = open(f"{base_path}/queries.jsonl", "r") | |
| qrels_file = open(f"{base_path}/qrels/test.tsv", "r") | |
| return load_local_corpus(corpus_file), load_local_queries(queries_file), load_local_qrels(qrels_file) | |
| else: | |
| raise NotImplementedError("Dataset not implemented") |