Spaces:
Running
Running
Commit
·
efc3d5b
1
Parent(s):
5aacd58
added columns types
Browse files
app.py
CHANGED
|
@@ -12,6 +12,17 @@ LLM_PERF_LEADERBOARD_REPO = "optimum/llm-perf-leaderboard"
|
|
| 12 |
LLM_PERF_DATASET_REPO = "optimum/llm-perf-dataset"
|
| 13 |
OPTIMUM_TOKEN = os.environ.get("OPTIMUM_TOKEN")
|
| 14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
llm_perf_dataset_repo = load_dataset_repo(LLM_PERF_DATASET_REPO, OPTIMUM_TOKEN)
|
| 16 |
|
| 17 |
|
|
@@ -19,25 +30,23 @@ def get_vanilla_benchmark_df():
|
|
| 19 |
if llm_perf_dataset_repo:
|
| 20 |
llm_perf_dataset_repo.git_pull()
|
| 21 |
|
|
|
|
| 22 |
df = pd.read_csv(
|
| 23 |
"./llm-perf-dataset/reports/cuda_1_100/inference_report.csv")
|
| 24 |
|
| 25 |
-
|
| 26 |
-
|
| 27 |
|
| 28 |
-
|
|
|
|
| 29 |
|
|
|
|
| 30 |
df.rename(columns={
|
| 31 |
-
|
| 32 |
-
"backend.name": "Backend 🏭",
|
| 33 |
-
"backend.torch_dtype": "Load dtype",
|
| 34 |
-
"backend.quantization": "Quantization 🗜️",
|
| 35 |
-
"generate.latency(s)": "Latency (s) ⬇️",
|
| 36 |
-
"generate.throughput(tokens/s)": "Throughput (tokens/s) ⬆️",
|
| 37 |
}, inplace=True)
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
| 41 |
|
| 42 |
return df
|
| 43 |
|
|
@@ -54,7 +63,8 @@ with demo:
|
|
| 54 |
vanilla_benchmark_df = get_vanilla_benchmark_df()
|
| 55 |
leaderboard_table_lite = gr.components.Dataframe(
|
| 56 |
value=vanilla_benchmark_df,
|
| 57 |
-
|
|
|
|
| 58 |
elem_id="vanilla-benchmark",
|
| 59 |
)
|
| 60 |
|
|
|
|
| 12 |
LLM_PERF_DATASET_REPO = "optimum/llm-perf-dataset"
|
| 13 |
OPTIMUM_TOKEN = os.environ.get("OPTIMUM_TOKEN")
|
| 14 |
|
| 15 |
+
OLD_COLUMNS = ["model", "backend.name", "backend.torch_dtype", "backend.quantization",
|
| 16 |
+
"generate.latency(s)", "generate.throughput(tokens/s)"]
|
| 17 |
+
|
| 18 |
+
NEW_COLUMNS = ["Model", "Backend 🏭", "Load dtype", "Quantization 🗜️",
|
| 19 |
+
"Latency (s) ⬇️", "Throughput (tokens/s) ⬆️"]
|
| 20 |
+
|
| 21 |
+
COLUMNS_TYPES = ["markdown", "text", "text", "text", "number", "number"]
|
| 22 |
+
|
| 23 |
+
SORTING_COLUMN = ["Throughput (tokens/s) ⬆️"]
|
| 24 |
+
|
| 25 |
+
|
| 26 |
llm_perf_dataset_repo = load_dataset_repo(LLM_PERF_DATASET_REPO, OPTIMUM_TOKEN)
|
| 27 |
|
| 28 |
|
|
|
|
| 30 |
if llm_perf_dataset_repo:
|
| 31 |
llm_perf_dataset_repo.git_pull()
|
| 32 |
|
| 33 |
+
# load
|
| 34 |
df = pd.read_csv(
|
| 35 |
"./llm-perf-dataset/reports/cuda_1_100/inference_report.csv")
|
| 36 |
|
| 37 |
+
# preprocess
|
| 38 |
+
df["Model"] = df["Model"].apply(make_clickable_model)
|
| 39 |
|
| 40 |
+
# filter
|
| 41 |
+
df = df[OLD_COLUMNS]
|
| 42 |
|
| 43 |
+
# rename
|
| 44 |
df.rename(columns={
|
| 45 |
+
df_col: rename_col for df_col, rename_col in zip(OLD_COLUMNS, NEW_COLUMNS)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
}, inplace=True)
|
| 47 |
|
| 48 |
+
# sort
|
| 49 |
+
df.sort_values(by=SORTING_COLUMN, ascending=False, inplace=True)
|
| 50 |
|
| 51 |
return df
|
| 52 |
|
|
|
|
| 63 |
vanilla_benchmark_df = get_vanilla_benchmark_df()
|
| 64 |
leaderboard_table_lite = gr.components.Dataframe(
|
| 65 |
value=vanilla_benchmark_df,
|
| 66 |
+
type=COLUMNS_TYPES,
|
| 67 |
+
headers=NEW_COLUMNS,
|
| 68 |
elem_id="vanilla-benchmark",
|
| 69 |
)
|
| 70 |
|