Spaces:
Running
Running
Commit
Β·
d8b9ce2
1
Parent(s):
07c6067
filtered out some columns
Browse files- app.py +21 -25
- src/assets/text_content.py +1 -4
app.py
CHANGED
|
@@ -1,28 +1,25 @@
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
import pandas as pd
|
| 4 |
-
from huggingface_hub import HfApi
|
| 5 |
-
from huggingface_hub import Repository
|
| 6 |
from apscheduler.schedulers.background import BackgroundScheduler
|
| 7 |
|
| 8 |
-
from src.assets.text_content import
|
| 9 |
-
from src.assets.css_html_js import custom_css
|
| 10 |
|
| 11 |
OPTIMUM_TOKEN = os.environ.get("OPTIMUM_TOKEN", None)
|
| 12 |
|
| 13 |
LLM_PERF_LEADERBOARD_REPO = "optimum/llm-perf-leaderboard"
|
| 14 |
LLM_PERF_DATASET_REPO = "optimum/llm-perf"
|
| 15 |
|
| 16 |
-
api = HfApi()
|
| 17 |
-
|
| 18 |
|
| 19 |
def restart_space():
|
| 20 |
-
|
| 21 |
repo_id=LLM_PERF_LEADERBOARD_REPO, token=OPTIMUM_TOKEN
|
| 22 |
)
|
| 23 |
|
| 24 |
|
| 25 |
-
def
|
| 26 |
llm_perf_repo = None
|
| 27 |
if OPTIMUM_TOKEN:
|
| 28 |
print("Loading LLM-Perf-Dataset from Hub...")
|
|
@@ -37,29 +34,26 @@ def load_all_info_from_hub():
|
|
| 37 |
return llm_perf_repo
|
| 38 |
|
| 39 |
|
| 40 |
-
llm_perf_repo = load_all_info_from_hub()
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
def has_no_nan_values(df, columns):
|
| 44 |
-
return df[columns].notna().all(axis=1)
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
def has_nan_values(df, columns):
|
| 48 |
-
return df[columns].isna().any(axis=1)
|
| 49 |
-
|
| 50 |
-
|
| 51 |
def get_leaderboard_df():
|
| 52 |
if llm_perf_repo:
|
| 53 |
llm_perf_repo.git_pull()
|
| 54 |
|
| 55 |
df = pd.read_csv("./llm-perf/reports/cuda_1_100/inference_report.csv")
|
| 56 |
-
|
|
|
|
| 57 |
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
|
|
|
| 60 |
|
| 61 |
-
|
| 62 |
-
leaderboard_df = original_df.copy()
|
| 63 |
|
| 64 |
|
| 65 |
def refresh():
|
|
@@ -68,14 +62,16 @@ def refresh():
|
|
| 68 |
return leaderboard_df
|
| 69 |
|
| 70 |
|
|
|
|
|
|
|
| 71 |
demo = gr.Blocks(css=custom_css)
|
| 72 |
with demo:
|
| 73 |
gr.HTML(TITLE)
|
| 74 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
| 75 |
|
| 76 |
-
print("rendering tab...")
|
| 77 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 78 |
-
with gr.TabItem("
|
|
|
|
| 79 |
leaderboard_table_lite = gr.components.Dataframe(
|
| 80 |
value=leaderboard_df,
|
| 81 |
headers=leaderboard_df.columns.tolist(),
|
|
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
import pandas as pd
|
| 4 |
+
from huggingface_hub import HfApi, Repository
|
|
|
|
| 5 |
from apscheduler.schedulers.background import BackgroundScheduler
|
| 6 |
|
| 7 |
+
from src.assets.text_content import TITLE, INTRODUCTION_TEXT
|
| 8 |
+
from src.assets.css_html_js import custom_css, get_window_url_params
|
| 9 |
|
| 10 |
OPTIMUM_TOKEN = os.environ.get("OPTIMUM_TOKEN", None)
|
| 11 |
|
| 12 |
LLM_PERF_LEADERBOARD_REPO = "optimum/llm-perf-leaderboard"
|
| 13 |
LLM_PERF_DATASET_REPO = "optimum/llm-perf"
|
| 14 |
|
|
|
|
|
|
|
| 15 |
|
| 16 |
def restart_space():
|
| 17 |
+
HfApi().restart_space(
|
| 18 |
repo_id=LLM_PERF_LEADERBOARD_REPO, token=OPTIMUM_TOKEN
|
| 19 |
)
|
| 20 |
|
| 21 |
|
| 22 |
+
def load_dataset_repo():
|
| 23 |
llm_perf_repo = None
|
| 24 |
if OPTIMUM_TOKEN:
|
| 25 |
print("Loading LLM-Perf-Dataset from Hub...")
|
|
|
|
| 34 |
return llm_perf_repo
|
| 35 |
|
| 36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
def get_leaderboard_df():
|
| 38 |
if llm_perf_repo:
|
| 39 |
llm_perf_repo.git_pull()
|
| 40 |
|
| 41 |
df = pd.read_csv("./llm-perf/reports/cuda_1_100/inference_report.csv")
|
| 42 |
+
df = df[["model", "backend.name", "backend.torch_dtype", "backend.quantization",
|
| 43 |
+
"generate.latency(s)", "generate.throughput(tokens/s)"]]
|
| 44 |
|
| 45 |
+
df.rename(columns={
|
| 46 |
+
"model": "Model",
|
| 47 |
+
"backend.name": "Backend",
|
| 48 |
+
"backend.torch_dtype": "Torch dtype",
|
| 49 |
+
"backend.quantization": "Quantization",
|
| 50 |
+
"generate.latency(s)": "Latency (s)",
|
| 51 |
+
"generate.throughput(tokens/s)": "Throughput (tokens/s)"
|
| 52 |
+
}, inplace=True)
|
| 53 |
|
| 54 |
+
df.sort_values(by=["Throughput (tokens/s)"], ascending=False, inplace=True)
|
| 55 |
|
| 56 |
+
return df
|
|
|
|
| 57 |
|
| 58 |
|
| 59 |
def refresh():
|
|
|
|
| 62 |
return leaderboard_df
|
| 63 |
|
| 64 |
|
| 65 |
+
llm_perf_repo = load_dataset_repo()
|
| 66 |
+
|
| 67 |
demo = gr.Blocks(css=custom_css)
|
| 68 |
with demo:
|
| 69 |
gr.HTML(TITLE)
|
| 70 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
| 71 |
|
|
|
|
| 72 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 73 |
+
with gr.TabItem("Vanilla Benchmark", elem_id="vanilla-benchmark", id=0):
|
| 74 |
+
leaderboard_df = get_leaderboard_df()
|
| 75 |
leaderboard_table_lite = gr.components.Dataframe(
|
| 76 |
value=leaderboard_df,
|
| 77 |
headers=leaderboard_df.columns.tolist(),
|
src/assets/text_content.py
CHANGED
|
@@ -1,8 +1,5 @@
|
|
| 1 |
TITLE = """<h1 align="center" id="space-title">π€ Open LLM-Perf Leaderboard</h1>"""
|
| 2 |
|
| 3 |
INTRODUCTION_TEXT = f"""
|
| 4 |
-
The π€ Open LLM-Perf Leaderboard aims to benchmark the performance of
|
| 5 |
-
"""
|
| 6 |
-
|
| 7 |
-
LLM_BENCHMARKS_TEXT = f"""
|
| 8 |
"""
|
|
|
|
| 1 |
TITLE = """<h1 align="center" id="space-title">π€ Open LLM-Perf Leaderboard</h1>"""
|
| 2 |
|
| 3 |
INTRODUCTION_TEXT = f"""
|
| 4 |
+
The π€ Open LLM-Perf Leaderboard aims to benchmark the performance (latency & throughput) of Large Language Models (LLMs) on different backends and hardwares using [Optimum-Benchmark](https://github.com/huggingface/optimum-benchmark)
|
|
|
|
|
|
|
|
|
|
| 5 |
"""
|