Spaces:
Running
Running
Commit
Β·
44b43cb
1
Parent(s):
ad86e2e
remove memroy from composite
Browse files
app.py
CHANGED
|
@@ -52,7 +52,7 @@ COLUMNS_DATATYPES = [
|
|
| 52 |
"number",
|
| 53 |
"str",
|
| 54 |
]
|
| 55 |
-
|
| 56 |
|
| 57 |
|
| 58 |
llm_perf_dataset_repo = load_dataset_repo(LLM_PERF_DATASET_REPO, OPTIMUM_TOKEN)
|
|
@@ -86,21 +86,24 @@ def get_benchmark_df(benchmark="1xA100-80GB"):
|
|
| 86 |
axis=1,
|
| 87 |
)
|
| 88 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
return bench_df
|
| 90 |
|
| 91 |
|
| 92 |
def get_benchmark_table(bench_df):
|
| 93 |
-
# sort based on composite score made by adding score, -latency, -memory each normalized to values between 0 and 1
|
| 94 |
-
normalized_score =(bench_df["score"]-bench_df["score"].min())/(bench_df["score"].max()-bench_df["score"].min())
|
| 95 |
-
normalized_latency = (bench_df["generate.latency(s)"].max()-bench_df["generate.latency(s)"])/(bench_df["generate.latency(s)"].max()-bench_df["generate.latency(s)"].min())
|
| 96 |
-
normalized_memory = (bench_df["forward.peak_memory(MB)"].max()-bench_df["forward.peak_memory(MB)"])/(bench_df["forward.peak_memory(MB)"].max()-bench_df["forward.peak_memory(MB)"].min())
|
| 97 |
-
bench_df["composite_score"] = normalized_score + normalized_latency + normalized_memory
|
| 98 |
-
bench_df.sort_values(by=["composite_score"], ascending=False, inplace=True)
|
| 99 |
-
|
| 100 |
# filter
|
| 101 |
bench_df = bench_df[list(COLUMNS_MAPPING.keys())]
|
| 102 |
# rename
|
| 103 |
bench_df.rename(columns=COLUMNS_MAPPING, inplace=True)
|
|
|
|
|
|
|
| 104 |
|
| 105 |
# transform
|
| 106 |
bench_df["Model π€"] = bench_df["Model π€"].apply(make_clickable_model)
|
|
|
|
| 52 |
"number",
|
| 53 |
"str",
|
| 54 |
]
|
| 55 |
+
SORTING_COLUMN = ["Composite Score β¬οΈ"]
|
| 56 |
|
| 57 |
|
| 58 |
llm_perf_dataset_repo = load_dataset_repo(LLM_PERF_DATASET_REPO, OPTIMUM_TOKEN)
|
|
|
|
| 86 |
axis=1,
|
| 87 |
)
|
| 88 |
|
| 89 |
+
# create composite score
|
| 90 |
+
normalized_score = bench_df["score"] / 100
|
| 91 |
+
normalized_latency = (
|
| 92 |
+
bench_df["generate.latency(s)"] / bench_df["generate.latency(s)"].max()
|
| 93 |
+
)
|
| 94 |
+
# normalized_memory = (bench_df["forward.peak_memory(MB)"].max()-bench_df["forward.peak_memory(MB)"])/(bench_df["forward.peak_memory(MB)"].max()-bench_df["forward.peak_memory(MB)"].min())
|
| 95 |
+
bench_df["composite_score"] = normalized_score - normalized_latency
|
| 96 |
+
|
| 97 |
return bench_df
|
| 98 |
|
| 99 |
|
| 100 |
def get_benchmark_table(bench_df):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
# filter
|
| 102 |
bench_df = bench_df[list(COLUMNS_MAPPING.keys())]
|
| 103 |
# rename
|
| 104 |
bench_df.rename(columns=COLUMNS_MAPPING, inplace=True)
|
| 105 |
+
# sort
|
| 106 |
+
bench_df.sort_values(by=SORTING_COLUMN, ascending=False, inplace=True)
|
| 107 |
|
| 108 |
# transform
|
| 109 |
bench_df["Model π€"] = bench_df["Model π€"].apply(make_clickable_model)
|