Spaces:
Running
Running
Commit
Β·
1cbd09d
1
Parent(s):
c8763bd
minimal
Browse files
app.py
CHANGED
|
@@ -6,14 +6,13 @@ from huggingface_hub import Repository
|
|
| 6 |
from apscheduler.schedulers.background import BackgroundScheduler
|
| 7 |
|
| 8 |
from src.assets.text_content import *
|
| 9 |
-
from src.assets.css_html_js import custom_css
|
| 10 |
|
| 11 |
OPTIMUM_TOKEN = os.environ.get("OPTIMUM_TOKEN", None)
|
| 12 |
|
| 13 |
LLM_PERF_LEADERBOARD_REPO = "optimum/llm-perf-leaderboard"
|
| 14 |
LLM_PERF_DATASET_REPO = "optimum/llm-perf"
|
| 15 |
|
| 16 |
-
|
| 17 |
api = HfApi()
|
| 18 |
|
| 19 |
|
|
@@ -26,6 +25,7 @@ def restart_space():
|
|
| 26 |
def load_all_info_from_hub():
|
| 27 |
llm_perf_repo = None
|
| 28 |
if OPTIMUM_TOKEN:
|
|
|
|
| 29 |
llm_perf_repo = Repository(
|
| 30 |
local_dir="./llm-perf/",
|
| 31 |
clone_from=LLM_PERF_DATASET_REPO,
|
|
@@ -53,6 +53,7 @@ def get_leaderboard_df():
|
|
| 53 |
llm_perf_repo.git_pull()
|
| 54 |
|
| 55 |
df = pd.read_csv("./llm-perf/reports/cuda_1_100/inference_report.csv")
|
|
|
|
| 56 |
|
| 57 |
return df
|
| 58 |
|
|
@@ -72,36 +73,16 @@ with demo:
|
|
| 72 |
gr.HTML(TITLE)
|
| 73 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
| 74 |
|
|
|
|
| 75 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 76 |
with gr.TabItem("π
LLM-Perf Benchmark", elem_id="llm-perf-benchmark-tab-table", id=0):
|
| 77 |
leaderboard_table_lite = gr.components.Dataframe(
|
| 78 |
value=leaderboard_df,
|
| 79 |
headers=leaderboard_df.columns.tolist(),
|
| 80 |
-
# datatype=TYPES_LITE,
|
| 81 |
max_rows=None,
|
| 82 |
elem_id="leaderboard-table-lite",
|
| 83 |
)
|
| 84 |
|
| 85 |
-
with gr.Row():
|
| 86 |
-
with gr.Column():
|
| 87 |
-
with gr.Accordion("π Citation", open=False):
|
| 88 |
-
citation_button = gr.Textbox(
|
| 89 |
-
value=CITATION_BUTTON_TEXT,
|
| 90 |
-
label=CITATION_BUTTON_LABEL,
|
| 91 |
-
elem_id="citation-button",
|
| 92 |
-
).style(show_copy_button=True)
|
| 93 |
-
with gr.Column():
|
| 94 |
-
with gr.Accordion("β¨ CHANGELOG", open=False):
|
| 95 |
-
changelog = gr.Markdown(
|
| 96 |
-
CHANGELOG_TEXT, elem_id="changelog-text")
|
| 97 |
-
|
| 98 |
-
dummy = gr.Textbox(visible=False)
|
| 99 |
-
demo.load(
|
| 100 |
-
dummy,
|
| 101 |
-
tabs,
|
| 102 |
-
_js=get_window_url_params,
|
| 103 |
-
)
|
| 104 |
-
|
| 105 |
scheduler = BackgroundScheduler()
|
| 106 |
scheduler.add_job(restart_space, "interval", seconds=3600)
|
| 107 |
scheduler.start()
|
|
|
|
| 6 |
from apscheduler.schedulers.background import BackgroundScheduler
|
| 7 |
|
| 8 |
from src.assets.text_content import *
|
| 9 |
+
from src.assets.css_html_js import custom_css
|
| 10 |
|
| 11 |
OPTIMUM_TOKEN = os.environ.get("OPTIMUM_TOKEN", None)
|
| 12 |
|
| 13 |
LLM_PERF_LEADERBOARD_REPO = "optimum/llm-perf-leaderboard"
|
| 14 |
LLM_PERF_DATASET_REPO = "optimum/llm-perf"
|
| 15 |
|
|
|
|
| 16 |
api = HfApi()
|
| 17 |
|
| 18 |
|
|
|
|
| 25 |
def load_all_info_from_hub():
|
| 26 |
llm_perf_repo = None
|
| 27 |
if OPTIMUM_TOKEN:
|
| 28 |
+
print("Loading LLM-Perf-Dataset from Hub...")
|
| 29 |
llm_perf_repo = Repository(
|
| 30 |
local_dir="./llm-perf/",
|
| 31 |
clone_from=LLM_PERF_DATASET_REPO,
|
|
|
|
| 53 |
llm_perf_repo.git_pull()
|
| 54 |
|
| 55 |
df = pd.read_csv("./llm-perf/reports/cuda_1_100/inference_report.csv")
|
| 56 |
+
print(df.columns)
|
| 57 |
|
| 58 |
return df
|
| 59 |
|
|
|
|
| 73 |
gr.HTML(TITLE)
|
| 74 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
| 75 |
|
| 76 |
+
print("rendering tab...")
|
| 77 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 78 |
with gr.TabItem("π
LLM-Perf Benchmark", elem_id="llm-perf-benchmark-tab-table", id=0):
|
| 79 |
leaderboard_table_lite = gr.components.Dataframe(
|
| 80 |
value=leaderboard_df,
|
| 81 |
headers=leaderboard_df.columns.tolist(),
|
|
|
|
| 82 |
max_rows=None,
|
| 83 |
elem_id="leaderboard-table-lite",
|
| 84 |
)
|
| 85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
scheduler = BackgroundScheduler()
|
| 87 |
scheduler.add_job(restart_space, "interval", seconds=3600)
|
| 88 |
scheduler.start()
|