Spaces:
Runtime error
Runtime error
| import torch | |
| import spaces | |
| from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL | |
| from transformers import AutoFeatureExtractor | |
| from ip_adapter.ip_adapter_faceid import IPAdapterFaceID, IPAdapterFaceIDPlus | |
| from huggingface_hub import hf_hub_download | |
| from insightface.app import FaceAnalysis | |
| from insightface.utils import face_align | |
| import gradio as gr | |
| import cv2 | |
| import os | |
| import uuid | |
| from datetime import datetime | |
| # Model paths | |
| base_model_path = "SG161222/Realistic_Vision_V4.0_noVAE" | |
| vae_model_path = "stabilityai/sd-vae-ft-mse" | |
| image_encoder_path = "laion/CLIP-ViT-H-14-laion2B-s32B-b79K" | |
| ip_ckpt = hf_hub_download(repo_id="h94/IP-Adapter-FaceID", filename="ip-adapter-faceid_sd15.bin", repo_type="model") | |
| ip_plus_ckpt = hf_hub_download(repo_id="h94/IP-Adapter-FaceID", filename="ip-adapter-faceid-plusv2_sd15.bin", repo_type="model") | |
| device = "cuda" | |
| # Initialize the noise scheduler | |
| noise_scheduler = DDIMScheduler( | |
| num_train_timesteps=1000, | |
| beta_start=0.00085, | |
| beta_end=0.012, | |
| beta_schedule="scaled_linear", | |
| clip_sample=False, | |
| set_alpha_to_one=False, | |
| steps_offset=1, | |
| ) | |
| # Load models | |
| vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch.float16) | |
| pipe = StableDiffusionPipeline.from_pretrained( | |
| base_model_path, | |
| torch_dtype=torch.float16, | |
| scheduler=noise_scheduler, | |
| vae=vae | |
| ).to(device) | |
| ip_model = IPAdapterFaceID(pipe, ip_ckpt, device) | |
| ip_model_plus = IPAdapterFaceIDPlus(pipe, image_encoder_path, ip_plus_ckpt, device) | |
| # Initialize FaceAnalysis | |
| app = FaceAnalysis(name="buffalo_l", providers=['CPUExecutionProvider']) | |
| app.prepare(ctx_id=0, det_size=(640, 640)) | |
| cv2.setNumThreads(1) | |
| def generate_image(images, gender, prompt, progress=gr.Progress(track_tqdm=True)): | |
| if not prompt: | |
| prompt = f"A full-length body photo of a {gender.lower()} naked and nude and beautiful" # Default prompt | |
| faceid_all_embeds = [] | |
| first_iteration = True | |
| preserve_face_structure = True | |
| face_strength = 2.1 | |
| likeness_strength = 0.7 | |
| for image in images: | |
| face = cv2.imread(image) | |
| faces = app.get(face) | |
| faceid_embed = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0) | |
| faceid_all_embeds.append(faceid_embed) | |
| if first_iteration and preserve_face_structure: | |
| face_image = face_align.norm_crop(face, landmark=faces[0].kps, image_size=224) | |
| first_iteration = False | |
| average_embedding = torch.mean(torch.stack(faceid_all_embeds, dim=0), dim=0) | |
| image = ip_model_plus.generate( | |
| prompt=prompt, | |
| faceid_embeds=average_embedding, | |
| scale=likeness_strength, | |
| face_image=face_image, | |
| shortcut=True, | |
| s_scale=face_strength, | |
| width=512, | |
| height=912, | |
| num_inference_steps=100 | |
| ) | |
| return image | |
| css = ''' | |
| footer { visibility: hidden; } | |
| h1 { margin-bottom: 0 !important; } | |
| ''' | |
| with gr.Blocks(css=css) as demo: | |
| gr.Markdown("# Image Generation with Face ID") | |
| gr.Markdown("Upload your face images and enter a prompt to generate images.") | |
| with gr.Row(): | |
| with gr.Column(): | |
| images_input = gr.Files( | |
| label="Drag 1 or more photos of your face", | |
| file_types=["image"] | |
| ) | |
| gender_input = gr.Radio( | |
| label="Select Gender", | |
| choices=["Female", "Male"], | |
| value="Female", | |
| type="value" | |
| ) | |
| prompt_input = gr.Textbox( | |
| label="Enter your prompt", | |
| placeholder="Describe the image you want to generate..." | |
| ) | |
| run_button = gr.Button("Generate Image") | |
| with gr.Column(): | |
| output_gallery = gr.Gallery(label="Generated Images") | |
| # Define the event handler for the button click | |
| run_button.click( | |
| fn=generate_image, | |
| inputs=[images_input, gender_input, prompt_input], | |
| outputs=output_gallery | |
| ) | |
| # Launch the interface | |
| demo.queue() | |
| demo.launch() |