hmacdope commited on
Commit
abd9b44
·
1 Parent(s): b9a3c9e
Files changed (1) hide show
  1. intermediate_leaderboard.py +6 -2
intermediate_leaderboard.py CHANGED
@@ -55,8 +55,9 @@ def make_intermediate_lb():
55
  df_latest_raw = df_latest_raw.query("Endpoint == 'Average'")
56
  df_latest_raw['latest_time_per_user'] = df_latest_raw.groupby('user')['submission_time'].transform('max')
57
  latest_submissions_df = df_latest_raw[df_latest_raw['submission_time'] == df_latest_raw['latest_time_per_user']].copy()
 
58
  latest_submissions_df = latest_submissions_df.sort_values(
59
- ['RAE','user', 'Sample'], ascending=True
60
  ).reset_index(drop=True)
61
 
62
  # Get the unique users in the order of their first appearance
@@ -81,7 +82,7 @@ def make_intermediate_lb():
81
  tukey = pairwise_tukeyhsd(endog=latest_submissions_df['RAE'], groups=latest_submissions_df['user'], alpha=0.05)
82
  tukey_df = pd.DataFrame(data=tukey._results_table.data[1:],
83
  columns=tukey._results_table.data[0])
84
-
85
  # add CLDs
86
  cld_dict = cld(tukey_df)
87
 
@@ -114,6 +115,9 @@ def make_intermediate_lb():
114
  )
115
  cld_df = cld_df.merge(metric_stats[['user', f'{metric}_mean', f'{metric}_std', f'{metric}_display']], on='user', how='left')
116
 
 
 
 
117
 
118
  cld_subset = cld_df[['user_fixed', 'fixed_letter'] + [f'{metric}_display' for metric in METRICS]]
119
  cld_subset = cld_subset.rename(columns={'user_fixed': 'user', 'fixed_letter': 'CLD'})
 
55
  df_latest_raw = df_latest_raw.query("Endpoint == 'Average'")
56
  df_latest_raw['latest_time_per_user'] = df_latest_raw.groupby('user')['submission_time'].transform('max')
57
  latest_submissions_df = df_latest_raw[df_latest_raw['submission_time'] == df_latest_raw['latest_time_per_user']].copy()
58
+
59
  latest_submissions_df = latest_submissions_df.sort_values(
60
+ ['RAE'], ascending=True
61
  ).reset_index(drop=True)
62
 
63
  # Get the unique users in the order of their first appearance
 
82
  tukey = pairwise_tukeyhsd(endog=latest_submissions_df['RAE'], groups=latest_submissions_df['user'], alpha=0.05)
83
  tukey_df = pd.DataFrame(data=tukey._results_table.data[1:],
84
  columns=tukey._results_table.data[0])
85
+
86
  # add CLDs
87
  cld_dict = cld(tukey_df)
88
 
 
115
  )
116
  cld_df = cld_df.merge(metric_stats[['user', f'{metric}_mean', f'{metric}_std', f'{metric}_display']], on='user', how='left')
117
 
118
+ # re-sort by RAE mean, lowest is best
119
+ cld_df = cld_df.sort_values(by='RAE_mean', ascending=True).reset_index(drop=True)
120
+
121
 
122
  cld_subset = cld_df[['user_fixed', 'fixed_letter'] + [f'{metric}_display' for metric in METRICS]]
123
  cld_subset = cld_subset.rename(columns={'user_fixed': 'user', 'fixed_letter': 'CLD'})