finalize
Browse files
intermediate_leaderboard.py
CHANGED
|
@@ -55,8 +55,9 @@ def make_intermediate_lb():
|
|
| 55 |
df_latest_raw = df_latest_raw.query("Endpoint == 'Average'")
|
| 56 |
df_latest_raw['latest_time_per_user'] = df_latest_raw.groupby('user')['submission_time'].transform('max')
|
| 57 |
latest_submissions_df = df_latest_raw[df_latest_raw['submission_time'] == df_latest_raw['latest_time_per_user']].copy()
|
|
|
|
| 58 |
latest_submissions_df = latest_submissions_df.sort_values(
|
| 59 |
-
['RAE'
|
| 60 |
).reset_index(drop=True)
|
| 61 |
|
| 62 |
# Get the unique users in the order of their first appearance
|
|
@@ -81,7 +82,7 @@ def make_intermediate_lb():
|
|
| 81 |
tukey = pairwise_tukeyhsd(endog=latest_submissions_df['RAE'], groups=latest_submissions_df['user'], alpha=0.05)
|
| 82 |
tukey_df = pd.DataFrame(data=tukey._results_table.data[1:],
|
| 83 |
columns=tukey._results_table.data[0])
|
| 84 |
-
|
| 85 |
# add CLDs
|
| 86 |
cld_dict = cld(tukey_df)
|
| 87 |
|
|
@@ -114,6 +115,9 @@ def make_intermediate_lb():
|
|
| 114 |
)
|
| 115 |
cld_df = cld_df.merge(metric_stats[['user', f'{metric}_mean', f'{metric}_std', f'{metric}_display']], on='user', how='left')
|
| 116 |
|
|
|
|
|
|
|
|
|
|
| 117 |
|
| 118 |
cld_subset = cld_df[['user_fixed', 'fixed_letter'] + [f'{metric}_display' for metric in METRICS]]
|
| 119 |
cld_subset = cld_subset.rename(columns={'user_fixed': 'user', 'fixed_letter': 'CLD'})
|
|
|
|
| 55 |
df_latest_raw = df_latest_raw.query("Endpoint == 'Average'")
|
| 56 |
df_latest_raw['latest_time_per_user'] = df_latest_raw.groupby('user')['submission_time'].transform('max')
|
| 57 |
latest_submissions_df = df_latest_raw[df_latest_raw['submission_time'] == df_latest_raw['latest_time_per_user']].copy()
|
| 58 |
+
|
| 59 |
latest_submissions_df = latest_submissions_df.sort_values(
|
| 60 |
+
['RAE'], ascending=True
|
| 61 |
).reset_index(drop=True)
|
| 62 |
|
| 63 |
# Get the unique users in the order of their first appearance
|
|
|
|
| 82 |
tukey = pairwise_tukeyhsd(endog=latest_submissions_df['RAE'], groups=latest_submissions_df['user'], alpha=0.05)
|
| 83 |
tukey_df = pd.DataFrame(data=tukey._results_table.data[1:],
|
| 84 |
columns=tukey._results_table.data[0])
|
| 85 |
+
|
| 86 |
# add CLDs
|
| 87 |
cld_dict = cld(tukey_df)
|
| 88 |
|
|
|
|
| 115 |
)
|
| 116 |
cld_df = cld_df.merge(metric_stats[['user', f'{metric}_mean', f'{metric}_std', f'{metric}_display']], on='user', how='left')
|
| 117 |
|
| 118 |
+
# re-sort by RAE mean, lowest is best
|
| 119 |
+
cld_df = cld_df.sort_values(by='RAE_mean', ascending=True).reset_index(drop=True)
|
| 120 |
+
|
| 121 |
|
| 122 |
cld_subset = cld_df[['user_fixed', 'fixed_letter'] + [f'{metric}_display' for metric in METRICS]]
|
| 123 |
cld_subset = cld_subset.rename(columns={'user_fixed': 'user', 'fixed_letter': 'CLD'})
|