initial app demo
Browse files
app.py
ADDED
|
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from gradio_leaderboard import Leaderboard, ColumnFilter
|
| 3 |
+
import pandas as pd
|
| 4 |
+
|
| 5 |
+
# dataset = load_dataset("your_dataset_name")
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
from datetime import datetime
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def gradio_interface():
|
| 13 |
+
with gr.Blocks(title="OpenADMET ADMET Challenge") as demo:
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
# --- Welcome markdown message ---
|
| 18 |
+
welcome_md = """
|
| 19 |
+
# 🧪 OpenADMET + XXX
|
| 20 |
+
## Computational Blind Challenge in ADMET
|
| 21 |
+
|
| 22 |
+
Welcome to the **XXX**, hosted by **OpenADMET** in collaboration with **XXX**.
|
| 23 |
+
|
| 24 |
+
Your task is to develop and submit predictive models for key ADMET properties on a blinded test set of real world drug discovery data.
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
📅 **Timeline**:
|
| 28 |
+
- TBD
|
| 29 |
+
|
| 30 |
+
---
|
| 31 |
+
|
| 32 |
+
"""
|
| 33 |
+
|
| 34 |
+
# --- Gradio Interface ---
|
| 35 |
+
with gr.Tabs(elem_classes="tab-buttons"):
|
| 36 |
+
|
| 37 |
+
with gr.TabItem("Welcome"):
|
| 38 |
+
gr.Markdown(welcome_md)
|
| 39 |
+
|
| 40 |
+
with gr.TabItem("Submit Predictions"):
|
| 41 |
+
gr.Markdown("Upload your prediction files here.")
|
| 42 |
+
filename = gr.State(value=None)
|
| 43 |
+
eval_state = gr.State(value=None)
|
| 44 |
+
user_state = gr.State(value=None)
|
| 45 |
+
|
| 46 |
+
with gr.TabItem("Leaderboard"):
|
| 47 |
+
gr.Markdown("View the leaderboard here.")
|
| 48 |
+
df = pd.DataFrame({
|
| 49 |
+
"user": ["User1", "User2", "User3"],
|
| 50 |
+
"Model": ["A", "B", "C"],
|
| 51 |
+
"R2": [0.94, 0.92, 0.89],
|
| 52 |
+
"Spearman R": [0.93, 0.91, 0.88],
|
| 53 |
+
})
|
| 54 |
+
Leaderboard(
|
| 55 |
+
value=df,
|
| 56 |
+
# Optionally configure columns:
|
| 57 |
+
select_columns=["Model", "R2", "Spearman R"],
|
| 58 |
+
# Additional options: search_columns, filter_columns, hide_columns, etc.
|
| 59 |
+
search_columns=["Model", "user"],
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
with gr.TabItem("About"):
|
| 64 |
+
gr.Markdown("Learn more about the challenge and the organizers.")
|
| 65 |
+
|
| 66 |
+
return demo
|
| 67 |
+
|
| 68 |
+
if __name__ == "__main__":
|
| 69 |
+
gradio_interface().launch()
|