Maria Castellanos
commited on
Commit
·
26bb373
1
Parent(s):
764fa75
leaderboard code v2
Browse files- cld.py +3 -3
- final_lb.py +46 -21
cld.py
CHANGED
|
@@ -4,10 +4,10 @@ import tqdm
|
|
| 4 |
import pandas as pd
|
| 5 |
from itertools import product
|
| 6 |
|
| 7 |
-
# Make large CLD alphabet
|
| 8 |
single_chars = list(ascii_lowercase) + list(ascii_uppercase)
|
| 9 |
-
|
| 10 |
-
CLD_ALPHABET = single_chars +
|
| 11 |
|
| 12 |
def asserts_non_significance(col: list[bool], i: int, j: int) -> bool:
|
| 13 |
"""Assert whether i and j are represented as non-significant in the column
|
|
|
|
| 4 |
import pandas as pd
|
| 5 |
from itertools import product
|
| 6 |
|
| 7 |
+
# Make large CLD alphabet
|
| 8 |
single_chars = list(ascii_lowercase) + list(ascii_uppercase)
|
| 9 |
+
underscore_chars = [''.join(p) for p in product(['_'], single_chars)]
|
| 10 |
+
CLD_ALPHABET = single_chars + underscore_chars
|
| 11 |
|
| 12 |
def asserts_non_significance(col: list[bool], i: int, j: int) -> bool:
|
| 13 |
"""Assert whether i and j are represented as non-significant in the column
|
final_lb.py
CHANGED
|
@@ -5,7 +5,7 @@ from utils import (
|
|
| 5 |
map_metric_to_stats,
|
| 6 |
fetch_dataset_df,
|
| 7 |
)
|
| 8 |
-
from about import ENDPOINTS, LB_COLS,
|
| 9 |
|
| 10 |
from loguru import logger
|
| 11 |
import pandas as pd
|
|
@@ -35,36 +35,59 @@ def build_leaderboard(df_results, df_results_raw, avg_only=True):
|
|
| 35 |
df['hf_username'] = df['hf_username'].apply(lambda s: s.lower())
|
| 36 |
df = df.sort_values(by="submission time", ascending=False, kind="stable")
|
| 37 |
df = df.drop_duplicates(subset=['hf_username'], keep='first')
|
|
|
|
| 38 |
# Sort by MAE-RAE
|
| 39 |
sorted_df = df.sort_values(by='mean_MA-RAE', ascending=True, kind="stable")
|
| 40 |
sorted_df = map_metric_to_stats(sorted_df, average=True)
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
df_raw = df_results_raw[df_results_raw["Endpoint"] == ep].copy()
|
| 45 |
df_raw = df_raw.rename(columns={"RAE": "MA-RAE"})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
avg_leaderboard = add_cld_to_leaderboard(
|
| 47 |
-
|
| 48 |
-
|
| 49 |
"MA-RAE",
|
| 50 |
)
|
| 51 |
avg_cols = ["rank",
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
# Make sure Hugging Face username exists, if not, delete the row
|
| 61 |
-
avg_leaderboard['user_real'] = avg_leaderboard['hf_username'].apply(validate_hf_username)
|
| 62 |
-
avg_leaderboard_clean = avg_leaderboard[avg_leaderboard['user_real']]
|
| 63 |
-
|
| 64 |
-
# Add ranking column
|
| 65 |
-
avg_leaderboard_clean['rank'] = np.arange(1, len(avg_leaderboard_clean) + 1)
|
| 66 |
|
| 67 |
-
per_ep[ep] =
|
| 68 |
|
| 69 |
else:
|
| 70 |
if avg_only:
|
|
@@ -109,6 +132,8 @@ def prepare_lb_csv(save_folder:str, avg_only:bool):
|
|
| 109 |
per_ep_df = build_leaderboard(df_latest, df_latest_raw, avg_only)
|
| 110 |
logger.info("Saving leaderboard")
|
| 111 |
for ep in ALL_EPS:
|
|
|
|
|
|
|
| 112 |
df_lb = per_ep_df[ep]
|
| 113 |
save_path = Path(save_folder) / f"{ep}_leaderboard.csv"
|
| 114 |
df_lb.to_csv(save_path, index=False)
|
|
|
|
| 5 |
map_metric_to_stats,
|
| 6 |
fetch_dataset_df,
|
| 7 |
)
|
| 8 |
+
from about import ENDPOINTS, LB_COLS, results_repo_test
|
| 9 |
|
| 10 |
from loguru import logger
|
| 11 |
import pandas as pd
|
|
|
|
| 35 |
df['hf_username'] = df['hf_username'].apply(lambda s: s.lower())
|
| 36 |
df = df.sort_values(by="submission time", ascending=False, kind="stable")
|
| 37 |
df = df.drop_duplicates(subset=['hf_username'], keep='first')
|
| 38 |
+
|
| 39 |
# Sort by MAE-RAE
|
| 40 |
sorted_df = df.sort_values(by='mean_MA-RAE', ascending=True, kind="stable")
|
| 41 |
sorted_df = map_metric_to_stats(sorted_df, average=True)
|
| 42 |
+
|
| 43 |
+
# Make sure Hugging Face username exists, if not, delete the row
|
| 44 |
+
sorted_df['user_real'] = sorted_df['hf_username'].apply(validate_hf_username)
|
| 45 |
+
sorted_df_clean = sorted_df[sorted_df['user_real']].reset_index(drop=True)
|
| 46 |
+
# Add ranking column
|
| 47 |
+
sorted_df_clean['rank'] = np.arange(1, len(sorted_df_clean) + 1)
|
| 48 |
+
avg_leaderboard = sorted_df_clean.copy()
|
| 49 |
+
|
| 50 |
+
# Clean raw data as well
|
| 51 |
df_raw = df_results_raw[df_results_raw["Endpoint"] == ep].copy()
|
| 52 |
df_raw = df_raw.rename(columns={"RAE": "MA-RAE"})
|
| 53 |
+
|
| 54 |
+
df_raw['hf_username'] = df_raw['hf_username'].apply(lambda s: s.lower())
|
| 55 |
+
df_raw = df_raw.sort_values(by="submission_time", ascending=False, kind="stable")
|
| 56 |
+
df_raw = df_raw.drop_duplicates(subset=['hf_username','Sample'], keep='first')
|
| 57 |
+
|
| 58 |
+
valid_usernames = sorted_df_clean['hf_username'].unique()
|
| 59 |
+
df_raw_clean = df_raw[df_raw['hf_username'].isin(valid_usernames)].reset_index(drop=True)
|
| 60 |
+
|
| 61 |
+
# Make sure order of raw dataframe is the same as sorted dataframe
|
| 62 |
+
username_order = sorted_df['hf_username'].unique()
|
| 63 |
+
df_raw_sorted = df_raw_clean.copy()
|
| 64 |
+
df_raw_sorted['hf_username'] = pd.Categorical(
|
| 65 |
+
df_raw_sorted['hf_username'],
|
| 66 |
+
categories=username_order,
|
| 67 |
+
ordered=True
|
| 68 |
+
)
|
| 69 |
+
df_raw_sorted = df_raw_sorted.sort_values(
|
| 70 |
+
by=['hf_username', 'Sample'],
|
| 71 |
+
ascending=[True, True]
|
| 72 |
+
)
|
| 73 |
+
df_raw_sorted['hf_username'] = df_raw_sorted['hf_username'].astype(str)
|
| 74 |
+
df_raw_sorted = df_raw_sorted.reset_index(drop=True)
|
| 75 |
+
|
| 76 |
avg_leaderboard = add_cld_to_leaderboard(
|
| 77 |
+
sorted_df_clean,
|
| 78 |
+
df_raw_sorted,
|
| 79 |
"MA-RAE",
|
| 80 |
)
|
| 81 |
avg_cols = ["rank",
|
| 82 |
+
"user",
|
| 83 |
+
"CLD",
|
| 84 |
+
"MA-RAE",
|
| 85 |
+
"R2",
|
| 86 |
+
"Spearman R",
|
| 87 |
+
"Kendall's Tau",
|
| 88 |
+
"model details"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
|
| 90 |
+
per_ep[ep] = avg_leaderboard[avg_cols]
|
| 91 |
|
| 92 |
else:
|
| 93 |
if avg_only:
|
|
|
|
| 132 |
per_ep_df = build_leaderboard(df_latest, df_latest_raw, avg_only)
|
| 133 |
logger.info("Saving leaderboard")
|
| 134 |
for ep in ALL_EPS:
|
| 135 |
+
if ep != "Average" and avg_only:
|
| 136 |
+
continue
|
| 137 |
df_lb = per_ep_df[ep]
|
| 138 |
save_path = Path(save_folder) / f"{ep}_leaderboard.csv"
|
| 139 |
df_lb.to_csv(save_path, index=False)
|