|
|
|
|
|
import pandas as pd |
|
|
import numpy as np |
|
|
from datasets import load_dataset |
|
|
from about import results_repo |
|
|
from about import LB_COLS0 |
|
|
|
|
|
def make_user_clickable(name): |
|
|
link =f'https://huggingface.co/{name}' |
|
|
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{name}</a>' |
|
|
def make_tag_clickable(tag): |
|
|
return f'<a target="_blank" href="{tag}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">link</a>' |
|
|
|
|
|
def fetch_dataset_df(): |
|
|
dset = load_dataset(results_repo, split='train', download_mode="force_redownload") |
|
|
full_df = dset.to_pandas() |
|
|
assert all( |
|
|
col in full_df.columns for col in LB_COLS0 |
|
|
), f"Expected columns {LB_COLS0} not found in {full_df.columns}. Missing columns: {set(LB_COLS0) - set(full_df.columns)}" |
|
|
|
|
|
df = full_df.copy() |
|
|
df = df[df["user"] != "test"].copy() |
|
|
df["submission_time"] = pd.to_datetime(df["submission_time"], errors="coerce") |
|
|
df = df.dropna(subset=["submission_time"]) |
|
|
|
|
|
|
|
|
latest = ( |
|
|
df.sort_values("submission_time") |
|
|
.drop_duplicates(subset=["endpoint", "user"], keep="last") |
|
|
.sort_values(["endpoint", "user"]) |
|
|
.reset_index(drop=True) |
|
|
) |
|
|
latest.rename(columns={"submission_time": "submission time"}, inplace=True) |
|
|
return latest |
|
|
|
|
|
def metrics_per_ep(pred, true): |
|
|
from scipy.stats import spearmanr, kendalltau |
|
|
from sklearn.metrics import mean_absolute_error, r2_score |
|
|
mae = mean_absolute_error(true, pred) |
|
|
rae = mae / np.mean(np.abs(true - np.mean(true))) |
|
|
if np.nanstd(true) == 0: |
|
|
r2=np.nan |
|
|
else: |
|
|
r2 = r2_score(true, pred) |
|
|
spr, _ = spearmanr(true, pred) |
|
|
ktau, _ = kendalltau(true, pred) |
|
|
|
|
|
return mae, rae, r2, spr, ktau |