Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Alina Lozovskaia
commited on
Commit
·
bab5ced
1
Parent(s):
ecacc0f
enhanced naming of dummy column
Browse files- app.py +6 -6
- src/display/css_html_js.py +6 -0
- src/display/utils.py +28 -23
- src/leaderboard/filter_models.py +11 -4
- src/leaderboard/read_evals.py +1 -0
- src/tools/collections.py +1 -1
app.py
CHANGED
|
@@ -154,17 +154,15 @@ def load_query(request: gr.Request): # triggered only once at startup => read q
|
|
| 154 |
|
| 155 |
|
| 156 |
def search_model(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
| 157 |
-
return df[(df[AutoEvalColumn.
|
| 158 |
-
|
| 159 |
|
| 160 |
def search_license(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
| 161 |
return df[df[AutoEvalColumn.license.name].str.contains(query, case=False, na=False)]
|
| 162 |
|
| 163 |
-
|
| 164 |
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
| 165 |
always_here_cols = [c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
| 166 |
-
|
| 167 |
-
filtered_df = df[always_here_cols + [c for c in COLS if c in df.columns and c in columns]]
|
| 168 |
return filtered_df
|
| 169 |
|
| 170 |
def filter_queries(query: str, df: pd.DataFrame):
|
|
@@ -323,7 +321,9 @@ with demo:
|
|
| 323 |
|
| 324 |
leaderboard_table = gr.components.Dataframe(
|
| 325 |
value=leaderboard_df[
|
| 326 |
-
[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
|
|
|
|
|
|
| 327 |
],
|
| 328 |
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
| 329 |
datatype=TYPES,
|
|
|
|
| 154 |
|
| 155 |
|
| 156 |
def search_model(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
| 157 |
+
return df[(df[AutoEvalColumn.fullname.name].str.contains(query, case=False, na=False))]
|
|
|
|
| 158 |
|
| 159 |
def search_license(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
| 160 |
return df[df[AutoEvalColumn.license.name].str.contains(query, case=False, na=False)]
|
| 161 |
|
|
|
|
| 162 |
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
| 163 |
always_here_cols = [c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
| 164 |
+
dummy_col = [AutoEvalColumn.fullname.name]
|
| 165 |
+
filtered_df = df[always_here_cols + [c for c in COLS if c in df.columns and c in columns] + dummy_col]
|
| 166 |
return filtered_df
|
| 167 |
|
| 168 |
def filter_queries(query: str, df: pd.DataFrame):
|
|
|
|
| 321 |
|
| 322 |
leaderboard_table = gr.components.Dataframe(
|
| 323 |
value=leaderboard_df[
|
| 324 |
+
[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
| 325 |
+
+ shown_columns.value
|
| 326 |
+
+ [AutoEvalColumn.fullname.name]
|
| 327 |
],
|
| 328 |
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
| 329 |
datatype=TYPES,
|
src/display/css_html_js.py
CHANGED
|
@@ -1,5 +1,11 @@
|
|
| 1 |
custom_css = """
|
| 2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
/* Limit the width of the first AutoEvalColumn so that names don't expand too much */
|
| 4 |
table td:first-child,
|
| 5 |
table th:first-child {
|
|
|
|
| 1 |
custom_css = """
|
| 2 |
|
| 3 |
+
/* Hides the final AutoEvalColumn */
|
| 4 |
+
#llm-benchmark-tab-table table td:last-child,
|
| 5 |
+
#llm-benchmark-tab-table table th:last-child {
|
| 6 |
+
display: none;
|
| 7 |
+
}
|
| 8 |
+
|
| 9 |
/* Limit the width of the first AutoEvalColumn so that names don't expand too much */
|
| 10 |
table td:first-child,
|
| 11 |
table th:first-child {
|
src/display/utils.py
CHANGED
|
@@ -47,34 +47,37 @@ class ColumnContent:
|
|
| 47 |
dummy: bool = False
|
| 48 |
|
| 49 |
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
[
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
]
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
auto_eval_column_dict
|
|
|
|
|
|
|
| 73 |
|
| 74 |
# We use make dataclass to dynamically fill the scores from Tasks
|
| 75 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
| 76 |
|
| 77 |
|
|
|
|
| 78 |
@dataclass(frozen=True)
|
| 79 |
class EvalQueueColumn: # Queue column
|
| 80 |
model = ColumnContent("model", "markdown", True)
|
|
@@ -97,6 +100,7 @@ baseline_row = {
|
|
| 97 |
AutoEvalColumn.truthfulqa.name: 25.0,
|
| 98 |
AutoEvalColumn.winogrande.name: 50.0,
|
| 99 |
AutoEvalColumn.gsm8k.name: 0.21,
|
|
|
|
| 100 |
AutoEvalColumn.model_type.name: "",
|
| 101 |
AutoEvalColumn.flagged.name: False,
|
| 102 |
}
|
|
@@ -121,6 +125,7 @@ human_baseline_row = {
|
|
| 121 |
AutoEvalColumn.truthfulqa.name: 94.0,
|
| 122 |
AutoEvalColumn.winogrande.name: 94.0,
|
| 123 |
AutoEvalColumn.gsm8k.name: 100,
|
|
|
|
| 124 |
AutoEvalColumn.model_type.name: "",
|
| 125 |
AutoEvalColumn.flagged.name: False,
|
| 126 |
}
|
|
|
|
| 47 |
dummy: bool = False
|
| 48 |
|
| 49 |
|
| 50 |
+
auto_eval_column_dict = []
|
| 51 |
+
# Init
|
| 52 |
+
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
| 53 |
+
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
| 54 |
+
# Scores
|
| 55 |
+
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
|
| 56 |
+
for task in Tasks:
|
| 57 |
+
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
|
| 58 |
+
# Model information
|
| 59 |
+
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
|
| 60 |
+
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
|
| 61 |
+
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
|
| 62 |
+
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
|
| 63 |
+
auto_eval_column_dict.append(["merged", ColumnContent, ColumnContent("Merged", "bool", False)])
|
| 64 |
+
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
|
| 65 |
+
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
|
| 66 |
+
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
|
| 67 |
+
auto_eval_column_dict.append(
|
| 68 |
+
["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False, hidden=True)]
|
| 69 |
+
)
|
| 70 |
+
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
|
| 71 |
+
auto_eval_column_dict.append(["flagged", ColumnContent, ColumnContent("Flagged", "bool", False, hidden=True)])
|
| 72 |
+
auto_eval_column_dict.append(["moe", ColumnContent, ColumnContent("MoE", "bool", False, hidden=True)])
|
| 73 |
+
# Dummy column for the search bar (hidden by the custom CSS)
|
| 74 |
+
auto_eval_column_dict.append(["fullname", ColumnContent, ColumnContent("fullname", "str", False, dummy=True)])
|
| 75 |
|
| 76 |
# We use make dataclass to dynamically fill the scores from Tasks
|
| 77 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
| 78 |
|
| 79 |
|
| 80 |
+
|
| 81 |
@dataclass(frozen=True)
|
| 82 |
class EvalQueueColumn: # Queue column
|
| 83 |
model = ColumnContent("model", "markdown", True)
|
|
|
|
| 100 |
AutoEvalColumn.truthfulqa.name: 25.0,
|
| 101 |
AutoEvalColumn.winogrande.name: 50.0,
|
| 102 |
AutoEvalColumn.gsm8k.name: 0.21,
|
| 103 |
+
AutoEvalColumn.fullname.name: "baseline",
|
| 104 |
AutoEvalColumn.model_type.name: "",
|
| 105 |
AutoEvalColumn.flagged.name: False,
|
| 106 |
}
|
|
|
|
| 125 |
AutoEvalColumn.truthfulqa.name: 94.0,
|
| 126 |
AutoEvalColumn.winogrande.name: 94.0,
|
| 127 |
AutoEvalColumn.gsm8k.name: 100,
|
| 128 |
+
AutoEvalColumn.fullname.name: "human_baseline",
|
| 129 |
AutoEvalColumn.model_type.name: "",
|
| 130 |
AutoEvalColumn.flagged.name: False,
|
| 131 |
}
|
src/leaderboard/filter_models.py
CHANGED
|
@@ -128,13 +128,19 @@ DO_NOT_SUBMIT_MODELS = [
|
|
| 128 |
"TigerResearch/tigerbot-70b-chat-v4-4k", # per authors request
|
| 129 |
]
|
| 130 |
|
|
|
|
| 131 |
def flag_models(leaderboard_data: list[dict]):
|
| 132 |
"""Flags models based on external criteria or flagged status."""
|
| 133 |
for model_data in leaderboard_data:
|
| 134 |
-
#
|
| 135 |
-
|
|
|
|
|
|
|
|
|
|
| 136 |
|
|
|
|
| 137 |
if flag_key in FLAGGED_MODELS:
|
|
|
|
| 138 |
issue_num = FLAGGED_MODELS[flag_key].split("/")[-1]
|
| 139 |
issue_link = model_hyperlink(
|
| 140 |
FLAGGED_MODELS[flag_key],
|
|
@@ -152,8 +158,7 @@ def remove_forbidden_models(leaderboard_data: list[dict]):
|
|
| 152 |
"""Removes models from the leaderboard based on the DO_NOT_SUBMIT list."""
|
| 153 |
indices_to_remove = []
|
| 154 |
for ix, model in enumerate(leaderboard_data):
|
| 155 |
-
|
| 156 |
-
if model[AutoEvalColumn.model.name] in DO_NOT_SUBMIT_MODELS:
|
| 157 |
indices_to_remove.append(ix)
|
| 158 |
|
| 159 |
# Remove the models from the list
|
|
@@ -161,6 +166,8 @@ def remove_forbidden_models(leaderboard_data: list[dict]):
|
|
| 161 |
leaderboard_data.pop(ix)
|
| 162 |
return leaderboard_data
|
| 163 |
|
|
|
|
| 164 |
def filter_models_flags(leaderboard_data: list[dict]):
|
| 165 |
leaderboard_data = remove_forbidden_models(leaderboard_data)
|
| 166 |
flag_models(leaderboard_data)
|
|
|
|
|
|
| 128 |
"TigerResearch/tigerbot-70b-chat-v4-4k", # per authors request
|
| 129 |
]
|
| 130 |
|
| 131 |
+
|
| 132 |
def flag_models(leaderboard_data: list[dict]):
|
| 133 |
"""Flags models based on external criteria or flagged status."""
|
| 134 |
for model_data in leaderboard_data:
|
| 135 |
+
# Merges and moes are flagged automatically
|
| 136 |
+
if model_data[AutoEvalColumn.flagged.name]:
|
| 137 |
+
flag_key = "merged"
|
| 138 |
+
else:
|
| 139 |
+
flag_key = model_data[AutoEvalColumn.fullname.name]
|
| 140 |
|
| 141 |
+
print(f"model check: {flag_key}")
|
| 142 |
if flag_key in FLAGGED_MODELS:
|
| 143 |
+
print(f"Flagged model: {flag_key}")
|
| 144 |
issue_num = FLAGGED_MODELS[flag_key].split("/")[-1]
|
| 145 |
issue_link = model_hyperlink(
|
| 146 |
FLAGGED_MODELS[flag_key],
|
|
|
|
| 158 |
"""Removes models from the leaderboard based on the DO_NOT_SUBMIT list."""
|
| 159 |
indices_to_remove = []
|
| 160 |
for ix, model in enumerate(leaderboard_data):
|
| 161 |
+
if model[AutoEvalColumn.fullname.name] in DO_NOT_SUBMIT_MODELS:
|
|
|
|
| 162 |
indices_to_remove.append(ix)
|
| 163 |
|
| 164 |
# Remove the models from the list
|
|
|
|
| 166 |
leaderboard_data.pop(ix)
|
| 167 |
return leaderboard_data
|
| 168 |
|
| 169 |
+
|
| 170 |
def filter_models_flags(leaderboard_data: list[dict]):
|
| 171 |
leaderboard_data = remove_forbidden_models(leaderboard_data)
|
| 172 |
flag_models(leaderboard_data)
|
| 173 |
+
|
src/leaderboard/read_evals.py
CHANGED
|
@@ -133,6 +133,7 @@ class EvalResult:
|
|
| 133 |
AutoEvalColumn.weight_type.name: self.weight_type.value.name,
|
| 134 |
AutoEvalColumn.architecture.name: self.architecture,
|
| 135 |
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
|
|
|
|
| 136 |
AutoEvalColumn.revision.name: self.revision,
|
| 137 |
AutoEvalColumn.average.name: average,
|
| 138 |
AutoEvalColumn.license.name: self.license,
|
|
|
|
| 133 |
AutoEvalColumn.weight_type.name: self.weight_type.value.name,
|
| 134 |
AutoEvalColumn.architecture.name: self.architecture,
|
| 135 |
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
|
| 136 |
+
AutoEvalColumn.fullname.name: self.full_model,
|
| 137 |
AutoEvalColumn.revision.name: self.revision,
|
| 138 |
AutoEvalColumn.average.name: average,
|
| 139 |
AutoEvalColumn.license.name: self.license,
|
src/tools/collections.py
CHANGED
|
@@ -60,7 +60,7 @@ def update_collections(df: DataFrame):
|
|
| 60 |
for size, interval in intervals.items():
|
| 61 |
filtered_df = _filter_by_type_and_size(df, model_type, interval)
|
| 62 |
best_models = list(
|
| 63 |
-
filtered_df.sort_values(AutoEvalColumn.average.name, ascending=False)[AutoEvalColumn.
|
| 64 |
)
|
| 65 |
print(model_type.value.symbol, size, best_models)
|
| 66 |
_add_models_to_collection(collection, best_models, model_type, size)
|
|
|
|
| 60 |
for size, interval in intervals.items():
|
| 61 |
filtered_df = _filter_by_type_and_size(df, model_type, interval)
|
| 62 |
best_models = list(
|
| 63 |
+
filtered_df.sort_values(AutoEvalColumn.average.name, ascending=False)[AutoEvalColumn.fullname.name][:10]
|
| 64 |
)
|
| 65 |
print(model_type.value.symbol, size, best_models)
|
| 66 |
_add_models_to_collection(collection, best_models, model_type, size)
|