Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Commit
·
65fc294
1
Parent(s):
1d6adda
Changed to Plotly for interactive graphs!
Browse filessuggestion by Nathan Habib implemented. So much better than the dumb printed graphs!
src/display_models/plot_results.py
CHANGED
|
@@ -1,8 +1,9 @@
|
|
| 1 |
import pandas as pd
|
| 2 |
-
import
|
|
|
|
| 3 |
import pickle
|
| 4 |
from datetime import datetime, timezone
|
| 5 |
-
from typing import List, Dict, Tuple, Any
|
| 6 |
|
| 7 |
# Average ⬆️ human baseline is 0.897 (source: averaging human baselines below)
|
| 8 |
# ARC human baseline is 0.80 (source: https://lab42.global/arc/)
|
|
@@ -82,6 +83,7 @@ def create_scores_df(results_df: pd.DataFrame) -> pd.DataFrame:
|
|
| 82 |
"MMLU": [],
|
| 83 |
"TruthfulQA": [],
|
| 84 |
"Result Date": [],
|
|
|
|
| 85 |
}
|
| 86 |
|
| 87 |
# Step 3: Iterate over the rows of the DataFrame and update the scores dictionary
|
|
@@ -92,6 +94,9 @@ def create_scores_df(results_df: pd.DataFrame) -> pd.DataFrame:
|
|
| 92 |
if not scores[column] or scores[column][-1] <= date:
|
| 93 |
scores[column].append(date)
|
| 94 |
continue
|
|
|
|
|
|
|
|
|
|
| 95 |
current_max = scores[column][-1] if scores[column] else float("-inf")
|
| 96 |
scores[column].append(max(current_max, row[column]))
|
| 97 |
|
|
@@ -114,7 +119,7 @@ def create_plot_df(scores_df: pd.DataFrame) -> pd.DataFrame:
|
|
| 114 |
|
| 115 |
# Iterate over the cols and create a new DataFrame for each column
|
| 116 |
for col in cols:
|
| 117 |
-
d = scores_df[[col, "Result Date"]].copy().reset_index(drop=True)
|
| 118 |
d["Metric Name"] = col
|
| 119 |
d.rename(columns={col: "Metric Value"}, inplace=True)
|
| 120 |
dfs.append(d)
|
|
@@ -133,37 +138,77 @@ def create_plot_df(scores_df: pd.DataFrame) -> pd.DataFrame:
|
|
| 133 |
return concat_df
|
| 134 |
|
| 135 |
|
| 136 |
-
def create_metric_plot_obj(
|
|
|
|
|
|
|
| 137 |
"""
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
:param
|
| 142 |
-
:param
|
| 143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
"""
|
| 145 |
-
|
|
|
|
| 146 |
df = df[df["Metric Name"].isin(metrics)]
|
| 147 |
|
| 148 |
-
# Filter the
|
| 149 |
filtered_human_baselines = {k: v for k, v in human_baselines.items() if k in metrics}
|
| 150 |
|
| 151 |
-
# Create a
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
|
|
|
| 159 |
)
|
| 160 |
|
| 161 |
-
#
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
)
|
| 167 |
|
| 168 |
-
#
|
| 169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import pandas as pd
|
| 2 |
+
import plotly.express as px
|
| 3 |
+
from plotly.graph_objs import Figure
|
| 4 |
import pickle
|
| 5 |
from datetime import datetime, timezone
|
| 6 |
+
from typing import List, Dict, Tuple, Any
|
| 7 |
|
| 8 |
# Average ⬆️ human baseline is 0.897 (source: averaging human baselines below)
|
| 9 |
# ARC human baseline is 0.80 (source: https://lab42.global/arc/)
|
|
|
|
| 83 |
"MMLU": [],
|
| 84 |
"TruthfulQA": [],
|
| 85 |
"Result Date": [],
|
| 86 |
+
"Model Name": [],
|
| 87 |
}
|
| 88 |
|
| 89 |
# Step 3: Iterate over the rows of the DataFrame and update the scores dictionary
|
|
|
|
| 94 |
if not scores[column] or scores[column][-1] <= date:
|
| 95 |
scores[column].append(date)
|
| 96 |
continue
|
| 97 |
+
if column == "Model Name":
|
| 98 |
+
scores[column].append(row["model_name_for_query"])
|
| 99 |
+
continue
|
| 100 |
current_max = scores[column][-1] if scores[column] else float("-inf")
|
| 101 |
scores[column].append(max(current_max, row[column]))
|
| 102 |
|
|
|
|
| 119 |
|
| 120 |
# Iterate over the cols and create a new DataFrame for each column
|
| 121 |
for col in cols:
|
| 122 |
+
d = scores_df[[col, "Model Name", "Result Date"]].copy().reset_index(drop=True)
|
| 123 |
d["Metric Name"] = col
|
| 124 |
d.rename(columns={col: "Metric Value"}, inplace=True)
|
| 125 |
dfs.append(d)
|
|
|
|
| 138 |
return concat_df
|
| 139 |
|
| 140 |
|
| 141 |
+
def create_metric_plot_obj(
|
| 142 |
+
df: pd.DataFrame, metrics: List[str], human_baselines: Dict[str, float], title: str
|
| 143 |
+
) -> Figure:
|
| 144 |
"""
|
| 145 |
+
Create a Plotly figure object with lines representing different metrics
|
| 146 |
+
and horizontal dotted lines representing human baselines.
|
| 147 |
+
|
| 148 |
+
:param df: The DataFrame containing the metric values, names, and dates.
|
| 149 |
+
:param metrics: A list of strings representing the names of the metrics
|
| 150 |
+
to be included in the plot.
|
| 151 |
+
:param human_baselines: A dictionary where keys are metric names
|
| 152 |
+
and values are human baseline values for the metrics.
|
| 153 |
+
:param title: A string representing the title of the plot.
|
| 154 |
+
:return: A Plotly figure object with lines representing metrics and
|
| 155 |
+
horizontal dotted lines representing human baselines.
|
| 156 |
"""
|
| 157 |
+
|
| 158 |
+
# Filter the DataFrame based on the specified metrics
|
| 159 |
df = df[df["Metric Name"].isin(metrics)]
|
| 160 |
|
| 161 |
+
# Filter the human baselines based on the specified metrics
|
| 162 |
filtered_human_baselines = {k: v for k, v in human_baselines.items() if k in metrics}
|
| 163 |
|
| 164 |
+
# Create a line figure using plotly express with specified markers and custom data
|
| 165 |
+
fig = px.line(
|
| 166 |
+
df,
|
| 167 |
+
x="Result Date",
|
| 168 |
+
y="Metric Value",
|
| 169 |
+
color="Metric Name",
|
| 170 |
+
markers=True,
|
| 171 |
+
custom_data=["Metric Name", "Metric Value", "Model Name"],
|
| 172 |
+
title=title,
|
| 173 |
)
|
| 174 |
|
| 175 |
+
# Update hovertemplate for better hover interaction experience
|
| 176 |
+
fig.update_traces(
|
| 177 |
+
hovertemplate="<br>".join(
|
| 178 |
+
[
|
| 179 |
+
"Model Name: %{customdata[2]}",
|
| 180 |
+
"Metric Name: %{customdata[0]}",
|
| 181 |
+
"Date: %{x}",
|
| 182 |
+
"Metric Value: %{y}",
|
| 183 |
+
]
|
| 184 |
+
)
|
| 185 |
)
|
| 186 |
|
| 187 |
+
# Create a dictionary to hold the color mapping for each metric
|
| 188 |
+
metric_color_mapping = {}
|
| 189 |
+
|
| 190 |
+
# Map each metric name to its color in the figure
|
| 191 |
+
for trace in fig.data:
|
| 192 |
+
metric_color_mapping[trace.name] = trace.line.color
|
| 193 |
+
|
| 194 |
+
# Iterate over filtered human baselines and add horizontal lines to the figure
|
| 195 |
+
for metric, value in filtered_human_baselines.items():
|
| 196 |
+
color = metric_color_mapping.get(metric, "blue") # Retrieve color from mapping; default to blue if not found
|
| 197 |
+
location = "top left" if metric == "HellaSwag" else "bottom left" # Set annotation position
|
| 198 |
+
# Add horizontal line with matched color and positioned annotation
|
| 199 |
+
fig.add_hline(
|
| 200 |
+
y=value,
|
| 201 |
+
line_dash="dot",
|
| 202 |
+
annotation_text=f"{metric} human baseline",
|
| 203 |
+
annotation_position=location,
|
| 204 |
+
annotation_font_size=10,
|
| 205 |
+
annotation_font_color=color,
|
| 206 |
+
line_color=color,
|
| 207 |
+
)
|
| 208 |
+
|
| 209 |
+
return fig
|
| 210 |
+
|
| 211 |
+
|
| 212 |
+
# Example Usage:
|
| 213 |
+
# human_baselines dictionary is defined.
|
| 214 |
+
# chart = create_metric_plot_obj(scores_df, ["ARC", "HellaSwag", "MMLU", "TruthfulQA"], human_baselines, "Graph Title")
|