Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
| import logging | |
| import time | |
| import schedule | |
| import datetime | |
| import gradio as gr | |
| from threading import Thread | |
| import datasets | |
| from huggingface_hub import snapshot_download, WebhooksServer, WebhookPayload, RepoCard | |
| from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns | |
| from apscheduler.schedulers.background import BackgroundScheduler | |
| # Start ephemeral Spaces on PRs (see config in README.md) | |
| from gradio_space_ci.webhook import IS_EPHEMERAL_SPACE, SPACE_ID, configure_space_ci | |
| from src.display.about import ( | |
| CITATION_BUTTON_LABEL, | |
| CITATION_BUTTON_TEXT, | |
| EVALUATION_QUEUE_TEXT, | |
| INTRODUCTION_TEXT, | |
| TITLE, | |
| ) | |
| from src.display.css_html_js import custom_css | |
| from src.display.utils import ( | |
| BENCHMARK_COLS, | |
| COLS, | |
| EVAL_COLS, | |
| EVAL_TYPES, | |
| AutoEvalColumn, | |
| ModelType, | |
| Precision, | |
| WeightType, | |
| fields, | |
| EvalQueueColumn | |
| ) | |
| from src.envs import ( | |
| API, | |
| EVAL_REQUESTS_PATH, | |
| AGGREGATED_REPO, | |
| HF_TOKEN, | |
| QUEUE_REPO, | |
| REPO_ID, | |
| VOTES_REPO, | |
| VOTES_PATH, | |
| HF_HOME, | |
| ) | |
| from src.populate import get_evaluation_queue_df, get_leaderboard_df | |
| from src.submission.submit import add_new_eval | |
| from src.voting.vote_system import VoteManager, run_scheduler | |
| # Configure logging | |
| logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s") | |
| # Start ephemeral Spaces on PRs (see config in README.md) | |
| from gradio_space_ci.webhook import IS_EPHEMERAL_SPACE, SPACE_ID, configure_space_ci | |
| # Convert the environment variable "LEADERBOARD_FULL_INIT" to a boolean value, defaulting to True if the variable is not set. | |
| # This controls whether a full initialization should be performed. | |
| DO_FULL_INIT = True # os.getenv("LEADERBOARD_FULL_INIT", "True") == "True" | |
| NEW_DATA_ON_LEADERBOARD = True | |
| LEADERBOARD_DF = None | |
| def restart_space(): | |
| logging.info(f"Restarting space with repo ID: {REPO_ID}") | |
| try: | |
| # Check if new data is pending and download if necessary | |
| if NEW_DATA_ON_LEADERBOARD: | |
| logging.info("Fetching latest leaderboard data before restart.") | |
| get_latest_data_leaderboard() | |
| # Now restart the space | |
| API.restart_space(repo_id=REPO_ID, token=HF_TOKEN) | |
| logging.info("Space restarted successfully.") | |
| except Exception as e: | |
| logging.error(f"Failed to restart space: {e}") | |
| def time_diff_wrapper(func): | |
| def wrapper(*args, **kwargs): | |
| start_time = time.time() | |
| result = func(*args, **kwargs) | |
| end_time = time.time() | |
| diff = end_time - start_time | |
| logging.info(f"Time taken for {func.__name__}: {diff} seconds") | |
| return result | |
| return wrapper | |
| def download_dataset(repo_id, local_dir, repo_type="dataset", max_attempts=3, backoff_factor=1.5): | |
| """Download dataset with exponential backoff retries.""" | |
| attempt = 0 | |
| while attempt < max_attempts: | |
| try: | |
| logging.info(f"Downloading {repo_id} to {local_dir}") | |
| snapshot_download( | |
| repo_id=repo_id, | |
| local_dir=local_dir, | |
| repo_type=repo_type, | |
| tqdm_class=None, | |
| etag_timeout=30, | |
| max_workers=8, | |
| ) | |
| logging.info("Download successful") | |
| return | |
| except Exception as e: | |
| wait_time = backoff_factor**attempt | |
| logging.error(f"Error downloading {repo_id}: {e}, retrying in {wait_time}s") | |
| time.sleep(wait_time) | |
| attempt += 1 | |
| raise Exception(f"Failed to download {repo_id} after {max_attempts} attempts") | |
| def get_latest_data_leaderboard(leaderboard_initial_df=None): | |
| global NEW_DATA_ON_LEADERBOARD | |
| global LEADERBOARD_DF | |
| if NEW_DATA_ON_LEADERBOARD: | |
| logging.info("Leaderboard updated at reload!") | |
| try: | |
| leaderboard_dataset = datasets.load_dataset( | |
| AGGREGATED_REPO, | |
| "default", | |
| split="train", | |
| cache_dir=HF_HOME, | |
| download_mode=datasets.DownloadMode.FORCE_REDOWNLOAD, # Always download fresh data | |
| verification_mode="no_checks" | |
| ) | |
| LEADERBOARD_DF = get_leaderboard_df( | |
| leaderboard_dataset=leaderboard_dataset, | |
| cols=COLS, | |
| benchmark_cols=BENCHMARK_COLS, | |
| ) | |
| logging.info("Leaderboard dataset successfully downloaded.") | |
| except Exception as e: | |
| logging.error(f"Failed to download leaderboard dataset: {e}") | |
| return | |
| # Reset the flag after successful download | |
| NEW_DATA_ON_LEADERBOARD = False | |
| else: | |
| LEADERBOARD_DF = leaderboard_initial_df | |
| logging.info("Using cached leaderboard dataset.") | |
| return LEADERBOARD_DF | |
| def get_latest_data_queue(): | |
| eval_queue_dfs = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS) | |
| return eval_queue_dfs | |
| def init_space(): | |
| """Initializes the application space, loading only necessary data.""" | |
| global NEW_DATA_ON_LEADERBOARD | |
| NEW_DATA_ON_LEADERBOARD = True # Ensure new data is always pulled on restart | |
| if DO_FULL_INIT: | |
| # These downloads only occur on full initialization | |
| try: | |
| download_dataset(QUEUE_REPO, EVAL_REQUESTS_PATH) | |
| download_dataset(VOTES_REPO, VOTES_PATH) | |
| except Exception: | |
| restart_space() | |
| # Always redownload the leaderboard DataFrame | |
| global LEADERBOARD_DF | |
| LEADERBOARD_DF = get_latest_data_leaderboard() | |
| # Evaluation queue DataFrame retrieval is independent of initialization detail level | |
| eval_queue_dfs = get_latest_data_queue() | |
| return LEADERBOARD_DF, eval_queue_dfs | |
| # Initialize VoteManager | |
| vote_manager = VoteManager(VOTES_PATH, EVAL_REQUESTS_PATH, VOTES_REPO) | |
| # Schedule the upload_votes method to run every 15 minutes | |
| schedule.every(15).minutes.do(vote_manager.upload_votes) | |
| # Start the scheduler in a separate thread | |
| scheduler_thread = Thread(target=run_scheduler, args=(vote_manager,), daemon=True) | |
| scheduler_thread.start() | |
| # Calls the init_space function with the `full_init` parameter determined by the `do_full_init` variable. | |
| # This initializes various DataFrames used throughout the application, with the level of initialization detail controlled by the `do_full_init` flag. | |
| LEADERBOARD_DF, eval_queue_dfs = init_space() | |
| finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = eval_queue_dfs | |
| def init_leaderboard(dataframe): | |
| if dataframe is None or dataframe.empty: | |
| raise ValueError("Leaderboard DataFrame is empty or None.") | |
| return Leaderboard( | |
| value=dataframe, | |
| datatype=[c.type for c in fields(AutoEvalColumn)], | |
| select_columns=SelectColumns( | |
| default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default], | |
| cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden or c.dummy], | |
| label="Select Columns to Display:", | |
| ), | |
| search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.fullname.name, AutoEvalColumn.license.name], | |
| hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden], | |
| filter_columns=[ | |
| ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"), | |
| ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"), | |
| ColumnFilter( | |
| AutoEvalColumn.params.name, | |
| type="slider", | |
| min=0.01, | |
| max=150, | |
| label="Select the number of parameters (B)", | |
| ), | |
| ColumnFilter( | |
| AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True | |
| ), | |
| ColumnFilter( | |
| AutoEvalColumn.merged.name, type="boolean", label="Merge/MoErge", default=True | |
| ), | |
| ColumnFilter(AutoEvalColumn.moe.name, type="boolean", label="MoE", default=False), | |
| ColumnFilter(AutoEvalColumn.not_flagged.name, type="boolean", label="Flagged", default=True), | |
| ColumnFilter(AutoEvalColumn.maintainers_highlight.name, type="boolean", label="Show only maintainer's highlight", default=False), | |
| ], | |
| bool_checkboxgroup_label="Hide models", | |
| interactive=False, | |
| ) | |
| main_block = gr.Blocks(css=custom_css) | |
| with main_block: | |
| with gr.Row(elem_id="header-row"): | |
| gr.HTML(TITLE) | |
| gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
| with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
| with gr.TabItem("π LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0): | |
| leaderboard = init_leaderboard(LEADERBOARD_DF) | |
| with gr.TabItem("π Submit ", elem_id="llm-benchmark-tab-table", id=5): | |
| with gr.Column(): | |
| with gr.Row(): | |
| gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") | |
| with gr.Row(): | |
| gr.Markdown("# βοΈβ¨ Submit your model here!", elem_classes="markdown-text") | |
| login_button = gr.LoginButton(elem_id="oauth-button") | |
| with gr.Row(): | |
| with gr.Column(): | |
| model_name_textbox = gr.Textbox(label="Model name") | |
| revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="latest") | |
| with gr.Row(): | |
| model_type = gr.Dropdown( | |
| choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown], | |
| label="Model type", | |
| multiselect=False, | |
| value=ModelType.FT.to_str(" : "), | |
| interactive=True, | |
| ) | |
| chat_template_toggle = gr.Checkbox( | |
| label="Use chat template", | |
| value=False, | |
| info="Is your model a chat model?", | |
| ) | |
| with gr.Column(): | |
| precision = gr.Dropdown( | |
| choices=[i.value.name for i in Precision if i != Precision.Unknown], | |
| label="Precision", | |
| multiselect=False, | |
| value="float16", | |
| interactive=True, | |
| ) | |
| weight_type = gr.Dropdown( | |
| choices=[i.value.name for i in WeightType], | |
| label="Weights type", | |
| multiselect=False, | |
| value=WeightType.Original.value.name, | |
| interactive=True, | |
| ) | |
| base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)", interactive=False) | |
| with gr.Column(): | |
| with gr.Accordion( | |
| f"β Finished Evaluations ({len(finished_eval_queue_df)})", | |
| open=False, | |
| ): | |
| with gr.Row(): | |
| finished_eval_table = gr.components.Dataframe( | |
| value=finished_eval_queue_df, | |
| headers=EVAL_COLS, | |
| datatype=EVAL_TYPES, | |
| row_count=5, | |
| interactive=False, | |
| ) | |
| with gr.Accordion( | |
| f"π Running Evaluation Queue ({len(running_eval_queue_df)})", | |
| open=False, | |
| ): | |
| with gr.Row(): | |
| running_eval_table = gr.components.Dataframe( | |
| value=running_eval_queue_df, | |
| headers=EVAL_COLS, | |
| datatype=EVAL_TYPES, | |
| row_count=5, | |
| interactive=False, | |
| ) | |
| with gr.Accordion( | |
| f"β³ Pending Evaluation Queue ({len(pending_eval_queue_df)})", | |
| open=False, | |
| ): | |
| with gr.Row(): | |
| pending_eval_table = gr.components.Dataframe( | |
| value=pending_eval_queue_df, | |
| headers=EVAL_COLS, | |
| datatype=EVAL_TYPES, | |
| row_count=5, | |
| interactive=False, | |
| ) | |
| submit_button = gr.Button("Submit Eval") | |
| submission_result = gr.Markdown() | |
| # The chat template checkbox update function | |
| def update_chat_checkbox(model_type_value): | |
| return ModelType.from_str(model_type_value) == ModelType.chat | |
| model_type.change( | |
| fn=update_chat_checkbox, | |
| inputs=[model_type], # Pass the current checkbox value | |
| outputs=chat_template_toggle, | |
| ) | |
| # The base_model_name_textbox interactivity and value reset function | |
| def update_base_model_name_textbox(weight_type_value): | |
| # Convert the dropdown value back to the corresponding WeightType Enum | |
| weight_type_enum = WeightType[weight_type_value] | |
| # Determine if the textbox should be interactive | |
| interactive = weight_type_enum in [WeightType.Adapter, WeightType.Delta] | |
| # Reset the value if weight type is "Original" | |
| reset_value = "" if not interactive else None | |
| return gr.update(interactive=interactive, value=reset_value) | |
| weight_type.change( | |
| fn=update_base_model_name_textbox, | |
| inputs=[weight_type], | |
| outputs=[base_model_name_textbox], | |
| ) | |
| submit_button.click( | |
| add_new_eval, | |
| [ | |
| model_name_textbox, | |
| base_model_name_textbox, | |
| revision_name_textbox, | |
| precision, | |
| weight_type, | |
| model_type, | |
| chat_template_toggle, | |
| ], | |
| submission_result, | |
| ) | |
| # Ensure the values in 'pending_eval_queue_df' are correct and ready for the DataFrame component | |
| with gr.TabItem("π Model Vote"): | |
| with gr.Row(): | |
| gr.Markdown( | |
| "## Vote for the models which should be evaluated first! \nYou'll need to sign in with the button above first. All votes are recorded.", | |
| elem_classes="markdown-text" | |
| ) | |
| login_button = gr.LoginButton(elem_id="oauth-button") | |
| with gr.Row(): | |
| pending_models = pending_eval_queue_df[EvalQueueColumn.model_name.name].to_list() | |
| with gr.Column(): | |
| selected_model = gr.Dropdown( | |
| choices=pending_models, | |
| label="Models", | |
| multiselect=False, | |
| value="str", | |
| interactive=True, | |
| ) | |
| vote_button = gr.Button("Vote", variant="primary") | |
| with gr.Row(): | |
| with gr.Accordion( | |
| f"Available models pending ({len(pending_eval_queue_df)})", | |
| open=True, | |
| ): | |
| with gr.Row(): | |
| pending_eval_table_votes = gr.components.Dataframe( | |
| value=vote_manager.create_request_vote_df( | |
| pending_eval_queue_df | |
| ), | |
| headers=EVAL_COLS, | |
| datatype=EVAL_TYPES, | |
| row_count=5, | |
| interactive=False | |
| ) | |
| # Set the click event for the vote button | |
| vote_button.click( | |
| vote_manager.add_vote, | |
| inputs=[selected_model, pending_eval_table], | |
| outputs=[pending_eval_table_votes] | |
| ) | |
| with gr.Row(): | |
| with gr.Accordion("π Citation", open=False): | |
| citation_button = gr.Textbox( | |
| value=CITATION_BUTTON_TEXT, | |
| label=CITATION_BUTTON_LABEL, | |
| lines=20, | |
| elem_id="citation-button", | |
| show_copy_button=True, | |
| ) | |
| main_block.load(fn=get_latest_data_leaderboard, inputs=[leaderboard], outputs=[leaderboard]) | |
| leaderboard.change(fn=get_latest_data_queue, inputs=None, outputs=[finished_eval_table, running_eval_table, pending_eval_table]) | |
| pending_eval_table.change(fn=vote_manager.create_request_vote_df, inputs=[pending_eval_table], outputs=[pending_eval_table_votes]) | |
| main_block.queue(default_concurrency_limit=40) | |
| def enable_space_ci_and_return_server(ui: gr.Blocks) -> WebhooksServer: | |
| # Taken from https://huggingface.co/spaces/Wauplin/gradio-space-ci/blob/075119aee75ab5e7150bf0814eec91c83482e790/src/gradio_space_ci/webhook.py#L61 | |
| # Compared to original, this one do not monkeypatch Gradio which allows us to define more webhooks. | |
| # ht to Lucain! | |
| if SPACE_ID is None: | |
| print("Not in a Space: Space CI disabled.") | |
| return WebhooksServer(ui=main_block) | |
| if IS_EPHEMERAL_SPACE: | |
| print("In an ephemeral Space: Space CI disabled.") | |
| return WebhooksServer(ui=main_block) | |
| card = RepoCard.load(repo_id_or_path=SPACE_ID, repo_type="space") | |
| config = card.data.get("space_ci", {}) | |
| print(f"Enabling Space CI with config from README: {config}") | |
| return configure_space_ci( | |
| blocks=ui, | |
| trusted_authors=config.get("trusted_authors"), | |
| private=config.get("private", "auto"), | |
| variables=config.get("variables", "auto"), | |
| secrets=config.get("secrets"), | |
| hardware=config.get("hardware"), | |
| storage=config.get("storage"), | |
| ) | |
| # Create webhooks server (with CI url if in Space and not ephemeral) | |
| webhooks_server = enable_space_ci_and_return_server(ui=main_block) | |
| # Add webhooks | |
| def update_leaderboard(payload: WebhookPayload) -> None: | |
| """Redownloads the leaderboard dataset each time it updates""" | |
| if payload.repo.type == "dataset" and payload.event.action == "update": | |
| global NEW_DATA_ON_LEADERBOARD | |
| logging.info("New data detected, downloading updated leaderboard dataset.") | |
| # Mark the flag for new data | |
| NEW_DATA_ON_LEADERBOARD = True | |
| # Now actually download the latest data immediately | |
| get_latest_data_leaderboard() | |
| # The below code is not used at the moment, as we can manage the queue file locally | |
| LAST_UPDATE_QUEUE = datetime.datetime.now() | |
| def update_queue(payload: WebhookPayload) -> None: | |
| """Redownloads the queue dataset each time it updates""" | |
| if payload.repo.type == "dataset" and payload.event.action == "update": | |
| current_time = datetime.datetime.now() | |
| global LAST_UPDATE_QUEUE | |
| if current_time - LAST_UPDATE_QUEUE > datetime.timedelta(minutes=10): | |
| print("Would have updated the queue") | |
| # We only redownload is last update was more than 10 minutes ago, as the queue is | |
| # updated regularly and heavy to download | |
| download_dataset(QUEUE_REPO, EVAL_REQUESTS_PATH) | |
| LAST_UPDATE_QUEUE = datetime.datetime.now() | |
| webhooks_server.launch() | |
| scheduler = BackgroundScheduler() | |
| scheduler.add_job(restart_space, "interval", hours=1) # Restart every 1h | |
| logging.info("Scheduler initialized to restart space every 1 hour.") | |
| scheduler.start() |