Spaces:
Running
Running
File size: 12,899 Bytes
7957cc3 2ad8303 8e37de3 2ad8303 b005330 2ad8303 b005330 2ad8303 a5f333a 8e37de3 a5f333a 8e37de3 a5f333a 8e37de3 a5f333a 2ad8303 8e37de3 2ad8303 a5f333a 7957cc3 b005330 8e37de3 a5f333a 8e37de3 a5f333a 8e37de3 2ad8303 a5f333a 8e37de3 a5f333a 2ad8303 8e37de3 a5f333a 2ad8303 8e37de3 a5f333a 8e37de3 a5f333a 8e37de3 a5f333a 8e37de3 a5f333a 2ad8303 8e37de3 a5f333a d6d1301 8e37de3 2ad8303 8e37de3 a5f333a 8e37de3 a5f333a 8e37de3 a5f333a 8e37de3 a5f333a 8e37de3 a5f333a 8e37de3 a5f333a 8e37de3 a5f333a 8e37de3 a5f333a 8e37de3 b005330 2ad8303 a5f333a 2ad8303 a5f333a 2ad8303 8e37de3 a5f333a 8e37de3 a5f333a 8e37de3 a5f333a 8e37de3 a5f333a 8e37de3 a5f333a 8e37de3 a5f333a 8e37de3 a5f333a 8e37de3 2ad8303 a5f333a 8e37de3 a5f333a 7957cc3 a5f333a 8e37de3 a5f333a 7957cc3 2ad8303 a5f333a 2ad8303 b005330 8e37de3 a5f333a 8e37de3 a5f333a 8e37de3 a5f333a b005330 a5f333a 2ad8303 a5f333a 8e37de3 a5f333a b005330 a5f333a b005330 a5f333a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
import io
from typing import List, Tuple, Dict, Any
from PIL import Image, ImageOps
import numpy as np
import torch
import gradio as gr
# Face detector
from facenet_pytorch import MTCNN
# HF image classifier
from transformers import AutoImageProcessor, AutoModelForImageClassification
# ========= Config =========
# Multi-model ensemble (Soft Voting). You can add 1~2 more deepfake binary classifiers here.
MODEL_IDS = [
"prithivMLmods/Deep-Fake-Detector-v2-Model",
# Example for additional model:
# "HuggingFaceM4/dfdc_deit_base_patch16_224",
]
MAX_SIDE = 896 # Resize image, keep detail
FACE_MIN_SIZE = 112 # Faces smaller than this in pixels are skipped (avoid artifacts)
FACE_MARGIN = 0.20 # Margin added when cropping face (square crop)
DETECT_THRESH = 0.80 # Face detection confidence threshold
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
SEED = 42 # For reproducibility
# =========================
torch.manual_seed(SEED)
np.random.seed(SEED)
# ---- Utilities ----
def resize_keep_ratio(img: Image.Image, max_side: int = MAX_SIDE) -> Image.Image:
"""Resize while preserving aspect ratio."""
w, h = img.size
m = max(w, h)
if m <= max_side:
return img
scale = max_side / float(m)
return img.resize((int(w * scale), int(h * scale)), Image.LANCZOS)
def to_square_with_margin(box, W, H, margin=FACE_MARGIN):
"""Convert face bounding box to a square crop with margin."""
x1, y1, x2, y2 = box
w = x2 - x1
h = y2 - y1
cx = (x1 + x2) / 2.0
cy = (y1 + y2) / 2.0
side = max(w, h) * (1.0 + margin)
x1s = int(max(0, cx - side/2))
y1s = int(max(0, cy - side/2))
x2s = int(min(W, cx + side/2))
y2s = int(min(H, cy + side/2))
# Make it square
sq_w = x2s - x1s
sq_h = y2s - y1s
if sq_w != sq_h:
diff = abs(sq_w - sq_h)
if sq_w < sq_h:
x1s = max(0, x1s - diff // 2)
x2s = min(W, x2s + diff - diff // 2)
else:
y1s = max(0, y1s - diff // 2)
y2s = min(H, y2s + diff - diff // 2)
return (x1s, y1s, x2s, y2s)
def canonical_label(label: str) -> str:
"""Standardize label names into fake/real."""
l = label.lower().strip()
fake_keys = ["fake", "ai", "synthetic", "deepfake", "generated", "manipulated", "forged"]
real_keys = ["real", "authentic", "genuine", "original", "live"]
if any(k in l for k in fake_keys): return "fake"
if any(k in l for k in real_keys): return "real"
return label
def rank_probs(id2label: Dict[int, str], probs: np.ndarray) -> List[Tuple[str, float]]:
"""Sort probabilities by descending value."""
pairs = [(id2label[i], float(probs[i])) for i in range(len(probs))]
return sorted(pairs, key=lambda x: x[1], reverse=True)
def entropy(p: np.ndarray) -> float:
"""Probability entropy as uncertainty measure."""
p = np.clip(p, 1e-8, 1.0)
return float(-(p * np.log(p)).sum())
def jpeg_recompress(pil_img: Image.Image, quality: int = 85) -> Image.Image:
"""JPEG recompression to simulate compression noise (TTA)."""
buf = io.BytesIO()
pil_img.save(buf, format="JPEG", quality=quality, optimize=True)
buf.seek(0)
return Image.open(buf).convert("RGB")
def mild_center_crop_resize(pil_img: Image.Image, ratio: float = 0.92) -> Image.Image:
"""Slight center crop and resize (TTA)."""
w, h = pil_img.size
nw, nh = int(w * ratio), int(h * ratio)
left = (w - nw) // 2
top = (h - nh) // 2
return pil_img.crop((left, top, left + nw, top + nh)).resize((w, h), Image.LANCZOS)
# ===== Image quality evaluation (to reduce false positives on webcam photos) =====
def _np_gray(pil_img: Image.Image) -> np.ndarray:
return np.array(pil_img.convert("L"))
def _conv2d_same_reflect(img: np.ndarray, kernel: np.ndarray) -> np.ndarray:
"""Lightweight 2D convolution (reflect padding, no cv2/scipy)."""
kh, kw = kernel.shape
ph, pw = kh // 2, kw // 2
img_pad = np.pad(img, ((ph, ph), (pw, pw)), mode="reflect")
out = np.zeros_like(img, dtype=np.float32)
for i in range(out.shape[0]):
for j in range(out.shape[1]):
region = img_pad[i:i+kh, j:j+kw]
out[i, j] = float((region * kernel).sum())
return out
def variance_of_laplacian(gray: np.ndarray) -> float:
"""Sharpness measure (blur detection)."""
k = np.array([[0, 1, 0],[1,-4, 1],[0, 1, 0]], dtype=np.float32)
lap = _conv2d_same_reflect(gray.astype(np.float32), k)
return float(lap.var())
def jpeg_size_ratio(pil_img: Image.Image, quality: int = 85) -> float:
"""Compression ratio proxy."""
buf_png = io.BytesIO(); pil_img.save(buf_png, format="PNG"); s_png = len(buf_png.getvalue())
buf_jpg = io.BytesIO(); pil_img.save(buf_jpg, format="JPEG", quality=quality, optimize=True); s_jpg = len(buf_jpg.getvalue())
if s_png == 0: return 1.0
return float(s_jpg) / float(s_png)
def image_quality_metrics(pil_img: Image.Image) -> Dict[str, float]:
g = _np_gray(pil_img)
return {
"sharp": variance_of_laplacian(g),
"bright": float(g.mean()),
"contrast": float(g.std()),
"comp": jpeg_size_ratio(pil_img, 85)
}
def quality_bucket(m: Dict[str,float]) -> str:
"""Classify image quality level."""
poor = (m["sharp"] < 60) or (m["bright"] < 40) or (m["bright"] > 215) or (m["contrast"] < 25)
good = (m["sharp"] >= 120) and (50 <= m["bright"] <= 200) and (m["contrast"] >= 35)
if poor: return "poor"
if good: return "good"
return "ok"
def logit(p, eps=1e-6): p = min(max(p, eps), 1 - eps); return float(np.log(p/(1-p)))
def sigmoid(x): return float(1/(1+np.exp(-x)))
def calibrate_fake_prob(p: float, qlvl: str) -> float:
"""Quality-adaptive probability scaling."""
if qlvl == "poor": t, b = 1.6, -0.4
elif qlvl == "good": t, b = 0.9, +0.1
else: t, b = 1.2, -0.1
z = (logit(p) + b) / t
return sigmoid(z)
# ---- Load models ----
mtcnn = MTCNN(keep_all=True, device=DEVICE)
_models = []
for mid in MODEL_IDS:
try: processor = AutoImageProcessor.from_pretrained(mid, use_fast=True)
except Exception: processor = AutoImageProcessor.from_pretrained(mid)
clf = AutoModelForImageClassification.from_pretrained(mid).to(DEVICE).eval()
_models.append((mid, processor, clf))
# ---- Core inference ----
@torch.no_grad()
def classify_images_ensemble(pils: List[Image.Image]) -> Dict[str, Any]:
"""Run classification on multiple faces and return per-image predictions."""
per_image_results = []
def tta_views(img): return [
img,
ImageOps.mirror(img),
jpeg_recompress(img, 85),
mild_center_crop_resize(img, 0.92),
]
use_amp = (DEVICE == "cuda")
for img in pils:
views = tta_views(img)
model_probs_accum = []
for (mid, processor, clf) in _models:
inputs = processor(images=views, return_tensors="pt")
inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
with torch.cuda.amp.autocast(enabled=use_amp):
logits = clf(**inputs).logits
probs = torch.softmax(logits, dim=-1)
model_probs_accum.append(probs.mean(dim=0).unsqueeze(0))
probs_ens = torch.cat(model_probs_accum, dim=0).mean(dim=0)
probs_np = probs_ens.float().cpu().numpy()
id2label = _models[0][2].config.id2label
ranked = rank_probs(id2label, probs_np)
fake_p = real_p = None
for i in range(len(probs_np)):
cat = canonical_label(id2label[i])
if cat == "fake": fake_p = max(fake_p or 0, probs_np[i])
elif cat == "real": real_p = max(real_p or 0, probs_np[i])
if fake_p is None and real_p is None:
top1 = ranked[0]
if canonical_label(top1[0]) == "fake": fake_p, real_p = top1[1], 1-top1[1]
else: real_p, fake_p = top1[1], 1-top1[1]
per_image_results.append({
"top": ranked[:3],
"fake_prob": None if fake_p is None else round(fake_p, 4),
"real_prob": None if real_p is None else round(real_p, 4),
"entropy": round(entropy(probs_np), 4)
})
return {"per_image": per_image_results}
def analyze(img: Image.Image) -> Dict[str, Any]:
"""Detect deepfake in faces and full image, quality-aware fusion."""
if img is None: return {"error": "No image uploaded."}
img = resize_keep_ratio(img.convert("RGB"), MAX_SIDE)
q_metrics = image_quality_metrics(img)
q_level = quality_bucket(q_metrics)
boxes, probs = mtcnn.detect(img)
crops, crop_boxes, kept_scores = [], [], []
# Face detection & filtering
if boxes is not None and probs is not None:
W, H = img.size
for (b, sc) in zip(boxes, probs):
if sc is None or sc < DETECT_THRESH: continue
x1s, y1s, x2s, y2s = to_square_with_margin(b, W, H, FACE_MARGIN)
if x2s<=x1s or y2s<=y1s: continue
face = img.crop((x1s, y1s, x2s, y2s))
if min(face.size) < FACE_MIN_SIZE: continue
crops.append(face); crop_boxes.append((x1s,y1s,x2s,y2s)); kept_scores.append(float(sc))
# Face inference
per_face_results = []
if crops:
preds = classify_images_ensemble(crops)["per_image"]
for i,(pred,box,sc) in enumerate(zip(preds, crop_boxes, kept_scores),1):
fm = image_quality_metrics(crops[i-1])
fl = quality_bucket(fm)
fp = pred.get("fake_prob")
if fp is not None:
pred["fake_prob_raw"]=fp
pred["fake_prob"]=round(calibrate_fake_prob(fp, fl),4)
pred["quality"]={"level":fl,**fm}
per_face_results.append({
"face_index":i,"box":{"x1":box[0],"y1":box[1],"x2":box[2],"y2":box[3]},
"det_score":round(sc,4),**pred
})
# Full-image inference (weak expert)
full_pred = classify_images_ensemble([img])["per_image"][0]
if full_pred.get("fake_prob") is not None:
full_pred["fake_prob_raw"]=full_pred["fake_prob"]
full_pred["fake_prob"]=round(calibrate_fake_prob(full_pred["fake_prob"], q_level),4)
full_pred["quality"]={"level":q_level,**q_metrics}
# Score fusion (faces > full image)
face_scores=[r["fake_prob"] for r in per_face_results if r.get("fake_prob") is not None]
if not face_scores and full_pred.get("fake_prob") is None:
overall_fake=0.5
else:
faces_robust=float(np.median(face_scores)) if face_scores else None
full_score=full_pred.get("fake_prob",None)
if faces_robust and full_score:
overall_fake=0.8*faces_robust+0.2*full_score
elif faces_robust: overall_fake=faces_robust
else: overall_fake=full_score
if face_scores:
q3=float(np.quantile(face_scores,0.75))
overall_fake=float(0.7*overall_fake+0.3*q3)
# Dynamic thresholding based on quality
if q_level=="poor": th_fake,th_unc=0.85,0.65
elif q_level=="good": th_fake,th_unc=0.70,0.55
else: th_fake,th_unc=0.75,0.60
if overall_fake>=th_fake: label="Likely Deepfake"
elif overall_fake>=th_unc: label="Uncertain"
else: label="Likely Real"
return {
"label":label,
"overall_fake_probability":round(overall_fake,4),
"faces_detected":len(per_face_results),
}
def visualize_faces(img: Image.Image):
"""Return cropped faces for preview."""
if img is None: return []
img=resize_keep_ratio(img.convert("RGB"),MAX_SIDE)
boxes,probs=mtcnn.detect(img)
thumbs=[]
if boxes is not None and probs is not None:
W,H=img.size
for(b,sc) in zip(boxes,probs):
if sc is None or sc<DETECT_THRESH: continue
x1s,y1s,x2s,y2s=to_square_with_margin(b,W,H,FACE_MARGIN)
if x2s<=x1s or y2s<=y1s: continue
face=img.crop((x1s,y1s,x2s,y2s))
if min(face.size)<FACE_MIN_SIZE: continue
thumbs.append(face.resize((160,160),Image.LANCZOS))
return thumbs
# ---- Gradio UI ----
with gr.Blocks() as demo:
gr.Markdown("""
# π΅οΈ FakeSpotter β Deepfake Image Detector
**Ensemble + TTA + Quality Awareness**
- Multi-model ensemble
- Face-focused detection + fallback to whole image
- Image quality guard to reduce false positives (e.g., webcam noise)
> Educational, not forensic-grade.
""")
with gr.Row():
inp=gr.Image(type="pil",label="Upload Image")
with gr.Column():
thumbs=gr.Gallery(label="Detected Face Crops (preview)",columns=6,height="auto")
out=gr.JSON(label="Results")
btn=gr.Button("Analyze")
btn.click(lambda im:visualize_faces(im),inputs=inp,outputs=thumbs)
btn.click(analyze,inputs=inp,outputs=out)
if __name__=="__main__":
demo.launch()
|