Spaces:
Sleeping
Sleeping
| """Tokenization classes for Moss""" | |
| import json | |
| import os | |
| import numpy as np | |
| import regex as re | |
| from functools import lru_cache | |
| from typing import TYPE_CHECKING, List, Optional, Tuple, Union | |
| from transformers.utils import is_tf_available, is_torch_available, logging | |
| from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer | |
| if TYPE_CHECKING: | |
| if is_torch_available(): | |
| import torch | |
| if is_tf_available(): | |
| import tensorflow as tf | |
| logger = logging.get_logger(__name__) | |
| VOCAB_FILES_NAMES = { | |
| "vocab_file": "vocab.json", | |
| "merges_file": "merges.txt", | |
| } | |
| PRETRAINED_VOCAB_FILES_MAP = { | |
| "vocab_file": { | |
| "fnlp/moss-moon-003-base": "https://huggingface.co/fnlp/moss-moon-003-base/resolve/main/vocab.json", | |
| "fnlp/moss-moon-003-sft": "https://huggingface.co/fnlp/moss-moon-003-sft/resolve/main/vocab.json", | |
| "fnlp/moss-moon-003-sft-plugin": "https://huggingface.co/fnlp/moss-moon-003-sft-plugin/resolve/main/vocab.json", | |
| }, | |
| "merges_file": { | |
| "fnlp/moss-moon-003-base": "https://huggingface.co/fnlp/moss-moon-003-base/resolve/main/merges.txt", | |
| "fnlp/moss-moon-003-sft": "https://huggingface.co/fnlp/moss-moon-003-sft/resolve/main/merges.txt", | |
| "fnlp/moss-moon-003-sft-plugin": "https://huggingface.co/fnlp/moss-moon-003-sft-plugin/resolve/main/merges.txt", | |
| }, | |
| } | |
| PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { | |
| "fnlp/moss-moon-003-base": 2048, | |
| "fnlp/moss-moon-003-sft": 2048, | |
| "fnlp/moss-moon-003-sft-plugin": 2048, | |
| } | |
| def bytes_to_unicode(): | |
| """ | |
| Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control | |
| characters the bpe code barfs on. | |
| The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab | |
| if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for | |
| decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup | |
| tables between utf-8 bytes and unicode strings. | |
| """ | |
| bs = ( | |
| list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1)) | |
| ) | |
| cs = bs[:] | |
| n = 0 | |
| for b in range(2**8): | |
| if b not in bs: | |
| bs.append(b) | |
| cs.append(2**8 + n) | |
| n += 1 | |
| cs = [chr(n) for n in cs] | |
| return dict(zip(bs, cs)) | |
| def get_pairs(word): | |
| """ | |
| Return set of symbol pairs in a word. | |
| Word is represented as tuple of symbols (symbols being variable-length strings). | |
| """ | |
| pairs = set() | |
| prev_char = word[0] | |
| for char in word[1:]: | |
| pairs.add((prev_char, char)) | |
| prev_char = char | |
| return pairs | |
| class MossTokenizer(PreTrainedTokenizer): | |
| """ | |
| Construct a Moss tokenizer. Based on byte-level Byte-Pair-Encoding. | |
| This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will | |
| be encoded differently whether it is at the beginning of the sentence (without space) or not: | |
| You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer or when you | |
| call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance. | |
| <Tip> | |
| When used with `is_split_into_words=True`, this tokenizer will add a space before each word (even the first one). | |
| </Tip> | |
| This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to | |
| this superclass for more information regarding those methods. | |
| Args: | |
| vocab_file (`str`): | |
| Path to the vocabulary file. | |
| merges_file (`str`): | |
| Path to the merges file. | |
| errors (`str`, *optional*, defaults to `"replace"`): | |
| Paradigm to follow when decoding bytes to UTF-8. See | |
| [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information. | |
| unk_token (`str`, *optional*, defaults to `<|endoftext|>`): | |
| The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this | |
| token instead. | |
| bos_token (`str`, *optional*, defaults to `<|endoftext|>`): | |
| The beginning of sequence token. | |
| eos_token (`str`, *optional*, defaults to `<|endoftext|>`): | |
| The end of sequence token. | |
| add_prefix_space (`bool`, *optional*, defaults to `False`): | |
| Whether or not to add an initial space to the input. This allows to treat the leading word just as any | |
| other word. (Moss tokenizer detect beginning of words by the preceding space). | |
| """ | |
| vocab_files_names = VOCAB_FILES_NAMES | |
| pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP | |
| max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES | |
| model_input_names = ["input_ids", "attention_mask"] | |
| def __init__( | |
| self, | |
| vocab_file, | |
| merges_file, | |
| errors="replace", | |
| unk_token="<|endoftext|>", | |
| bos_token="<|endoftext|>", | |
| eos_token="<eom>", | |
| pad_token=None, | |
| add_prefix_space=False, | |
| add_bos_token=False, | |
| **kwargs, | |
| ): | |
| bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token | |
| eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token | |
| unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token | |
| pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token | |
| super().__init__( | |
| errors=errors, | |
| unk_token=unk_token, | |
| bos_token=bos_token, | |
| eos_token=eos_token, | |
| pad_token=pad_token, | |
| add_prefix_space=add_prefix_space, | |
| add_bos_token=add_bos_token, | |
| **kwargs, | |
| ) | |
| self.add_bos_token = add_bos_token | |
| with open(vocab_file, encoding="utf-8") as vocab_handle: | |
| self.encoder = json.load(vocab_handle) | |
| self.decoder = {v: k for k, v in self.encoder.items()} | |
| self.errors = errors # how to handle errors in decoding | |
| self.byte_encoder = bytes_to_unicode() | |
| self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} | |
| with open(merges_file, encoding="utf-8") as merges_handle: | |
| bpe_merges = merges_handle.read().split("\n")[1:-1] | |
| bpe_merges = [tuple(merge.split()) for merge in bpe_merges] | |
| self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges)))) | |
| self.cache = {} | |
| self.add_prefix_space = add_prefix_space | |
| # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions | |
| self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""") | |
| def vocab_size(self): | |
| return len(self.encoder) | |
| def get_vocab(self): | |
| return dict(self.encoder, **self.added_tokens_encoder) | |
| def bpe(self, token): | |
| if token in self.cache: | |
| return self.cache[token] | |
| word = tuple(token) | |
| pairs = get_pairs(word) | |
| if not pairs: | |
| return token | |
| while True: | |
| bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) | |
| if bigram not in self.bpe_ranks: | |
| break | |
| first, second = bigram | |
| new_word = [] | |
| i = 0 | |
| while i < len(word): | |
| try: | |
| j = word.index(first, i) | |
| except ValueError: | |
| new_word.extend(word[i:]) | |
| break | |
| else: | |
| new_word.extend(word[i:j]) | |
| i = j | |
| if word[i] == first and i < len(word) - 1 and word[i + 1] == second: | |
| new_word.append(first + second) | |
| i += 2 | |
| else: | |
| new_word.append(word[i]) | |
| i += 1 | |
| new_word = tuple(new_word) | |
| word = new_word | |
| if len(word) == 1: | |
| break | |
| else: | |
| pairs = get_pairs(word) | |
| word = " ".join(word) | |
| self.cache[token] = word | |
| return word | |
| def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): | |
| if self.add_bos_token: | |
| bos_token_ids = [self.bos_token_id] | |
| else: | |
| bos_token_ids = [] | |
| output = bos_token_ids + token_ids_0 | |
| if token_ids_1 is None: | |
| return output | |
| return output + bos_token_ids + token_ids_1 | |
| def _tokenize(self, text): | |
| """Tokenize a string.""" | |
| bpe_tokens = [] | |
| for token in re.findall(self.pat, text): | |
| token = "".join( | |
| self.byte_encoder[b] for b in token.encode("utf-8") | |
| ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) | |
| bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" ")) | |
| return bpe_tokens | |
| def _convert_token_to_id(self, token): | |
| """Converts a token (str) in an id using the vocab.""" | |
| return self.encoder.get(token, self.encoder.get(self.unk_token)) | |
| def _convert_id_to_token(self, index): | |
| """Converts an index (integer) in a token (str) using the vocab.""" | |
| return self.decoder.get(index) | |
| def convert_tokens_to_string(self, tokens): | |
| """Converts a sequence of tokens (string) in a single string.""" | |
| text = "".join(tokens) | |
| text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors) | |
| return text | |
| def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: | |
| if not os.path.isdir(save_directory): | |
| logger.error(f"Vocabulary path ({save_directory}) should be a directory") | |
| return | |
| vocab_file = os.path.join( | |
| save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] | |
| ) | |
| merge_file = os.path.join( | |
| save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] | |
| ) | |
| with open(vocab_file, "w", encoding="utf-8") as f: | |
| f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n") | |
| index = 0 | |
| with open(merge_file, "w", encoding="utf-8") as writer: | |
| writer.write("#version: 0.2\n") | |
| for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): | |
| if index != token_index: | |
| logger.warning( | |
| f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." | |
| " Please check that the tokenizer is not corrupted!" | |
| ) | |
| index = token_index | |
| writer.write(" ".join(bpe_tokens) + "\n") | |
| index += 1 | |
| return vocab_file, merge_file | |
| def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs): | |
| add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space) | |
| if is_split_into_words or add_prefix_space: | |
| text = " " + text | |
| return (text, kwargs) | |
| def decode( | |
| self, | |
| token_ids: Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"], | |
| skip_special_tokens: bool = False, | |
| clean_up_tokenization_spaces: bool = None, | |
| truncate_before_pattern: Optional[List[str]] = None, | |
| **kwargs, | |
| ) -> str: | |
| """ | |
| Converts a sequence of ids in a string, using the tokenizer and vocabulary with options to remove special | |
| tokens and clean up tokenization spaces. | |
| Similar to doing `self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))`. | |
| Args: | |
| token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`): | |
| List of tokenized input ids. Can be obtained using the `__call__` method. | |
| skip_special_tokens (`bool`, *optional*, defaults to `False`): | |
| Whether or not to remove special tokens in the decoding. | |
| clean_up_tokenization_spaces (`bool`, *optional*): | |
| Whether or not to clean up the tokenization spaces. If `None`, will default to | |
| `self.clean_up_tokenization_spaces` (available in the `tokenizer_config`). | |
| truncate_before_pattern (`List[str]`, *optional*, defaults to `None`): | |
| A list of regular expression strings that will be used to truncate the returned string. This can be | |
| used to remove extra pieces of code (e.g. truncate if observing a comment symbol "#" at the beginning | |
| of a new line). An example pattern could be `["^#", re.escape("<|endoftext|>"), "^'''", "\n\n\n"]`. | |
| kwargs (additional keyword arguments, *optional*): | |
| Will be passed to the underlying model specific decode method. | |
| Returns: | |
| `str`: The decoded sentence. | |
| """ | |
| decoded_text = super()._decode( | |
| token_ids=token_ids, | |
| skip_special_tokens=skip_special_tokens, | |
| clean_up_tokenization_spaces=clean_up_tokenization_spaces, | |
| **kwargs, | |
| ) | |
| if truncate_before_pattern is not None and len(truncate_before_pattern) > 0: | |
| decoded_text = self.truncate(decoded_text, truncate_before_pattern) | |
| return decoded_text | |
| def truncate(self, completion, truncate_before_pattern): | |
| def find_re(string, pattern, start_pos): | |
| m = pattern.search(string, start_pos) | |
| return m.start() if m else -1 | |
| terminals = [re.compile(pattern, re.MULTILINE) for pattern in truncate_before_pattern] | |
| prints = list(re.finditer("^print", completion, re.MULTILINE)) | |
| if len(prints) > 1: | |
| completion = completion[: prints[1].start()] | |
| defs = list(re.finditer("^def", completion, re.MULTILINE)) | |
| if len(defs) > 1: | |
| completion = completion[: defs[1].start()] | |
| start_pos = 0 | |
| terminals_pos = [ | |
| pos for pos in [find_re(completion, terminal, start_pos) for terminal in terminals] if pos != -1 | |
| ] | |
| if len(terminals_pos) > 0: | |
| return completion[: min(terminals_pos)] | |
| else: | |
| return completion | |