Spaces:
Sleeping
Sleeping
| import os | |
| import logging | |
| import hashlib | |
| import PyPDF2 | |
| from tqdm import tqdm | |
| from modules.presets import * | |
| from modules.utils import * | |
| from modules.config import local_embedding | |
| def get_documents(file_src): | |
| from langchain.schema import Document | |
| from langchain.text_splitter import TokenTextSplitter | |
| text_splitter = TokenTextSplitter(chunk_size=500, chunk_overlap=30) | |
| documents = [] | |
| logging.debug("Loading documents...") | |
| logging.debug(f"file_src: {file_src}") | |
| for file in file_src: | |
| filepath = file.name | |
| filename = os.path.basename(filepath) | |
| file_type = os.path.splitext(filename)[1] | |
| logging.info(f"loading file: {filename}") | |
| texts = None | |
| try: | |
| if file_type == ".pdf": | |
| logging.debug("Loading PDF...") | |
| try: | |
| from modules.pdf_func import parse_pdf | |
| from modules.config import advance_docs | |
| two_column = advance_docs["pdf"].get("two_column", False) | |
| pdftext = parse_pdf(filepath, two_column).text | |
| except: | |
| pdftext = "" | |
| with open(filepath, "rb") as pdfFileObj: | |
| pdfReader = PyPDF2.PdfReader(pdfFileObj) | |
| for page in tqdm(pdfReader.pages): | |
| pdftext += page.extract_text() | |
| texts = [Document(page_content=pdftext, | |
| metadata={"source": filepath})] | |
| elif file_type == ".docx": | |
| logging.debug("Loading Word...") | |
| from langchain.document_loaders import UnstructuredWordDocumentLoader | |
| loader = UnstructuredWordDocumentLoader(filepath) | |
| texts = loader.load() | |
| elif file_type == ".pptx": | |
| logging.debug("Loading PowerPoint...") | |
| from langchain.document_loaders import UnstructuredPowerPointLoader | |
| loader = UnstructuredPowerPointLoader(filepath) | |
| texts = loader.load() | |
| elif file_type == ".epub": | |
| logging.debug("Loading EPUB...") | |
| from langchain.document_loaders import UnstructuredEPubLoader | |
| loader = UnstructuredEPubLoader(filepath) | |
| texts = loader.load() | |
| elif file_type == ".xlsx": | |
| logging.debug("Loading Excel...") | |
| text_list = excel_to_string(filepath) | |
| texts = [] | |
| for elem in text_list: | |
| texts.append(Document(page_content=elem, | |
| metadata={"source": filepath})) | |
| else: | |
| logging.debug("Loading text file...") | |
| from langchain.document_loaders import TextLoader | |
| loader = TextLoader(filepath, "utf8") | |
| texts = loader.load() | |
| except Exception as e: | |
| import traceback | |
| logging.error(f"Error loading file: {filename}") | |
| traceback.print_exc() | |
| if texts is not None: | |
| texts = text_splitter.split_documents(texts) | |
| documents.extend(texts) | |
| logging.debug("Documents loaded.") | |
| return documents | |
| def construct_index( | |
| api_key, | |
| file_src, | |
| max_input_size=4096, | |
| num_outputs=5, | |
| max_chunk_overlap=20, | |
| chunk_size_limit=600, | |
| embedding_limit=None, | |
| separator=" ", | |
| load_from_cache_if_possible=True, | |
| ): | |
| from langchain.chat_models import ChatOpenAI | |
| from langchain.vectorstores import FAISS | |
| if api_key: | |
| os.environ["OPENAI_API_KEY"] = api_key | |
| else: | |
| # 由于一个依赖的愚蠢的设计,这里必须要有一个API KEY | |
| os.environ["OPENAI_API_KEY"] = "sk-xxxxxxx" | |
| chunk_size_limit = None if chunk_size_limit == 0 else chunk_size_limit | |
| embedding_limit = None if embedding_limit == 0 else embedding_limit | |
| separator = " " if separator == "" else separator | |
| index_name = get_file_hash(file_src) | |
| index_path = f"./index/{index_name}" | |
| if local_embedding: | |
| from langchain.embeddings.huggingface import HuggingFaceEmbeddings | |
| embeddings = HuggingFaceEmbeddings( | |
| model_name="sentence-transformers/distiluse-base-multilingual-cased-v2") | |
| else: | |
| from langchain.embeddings import OpenAIEmbeddings | |
| if os.environ.get("OPENAI_API_TYPE", "openai") == "openai": | |
| embeddings = OpenAIEmbeddings(openai_api_base=os.environ.get( | |
| "OPENAI_API_BASE", None), openai_api_key=os.environ.get("OPENAI_EMBEDDING_API_KEY", api_key)) | |
| else: | |
| embeddings = OpenAIEmbeddings(deployment=os.environ["AZURE_EMBEDDING_DEPLOYMENT_NAME"], openai_api_key=os.environ["AZURE_OPENAI_API_KEY"], | |
| model=os.environ["AZURE_EMBEDDING_MODEL_NAME"], openai_api_base=os.environ["AZURE_OPENAI_API_BASE_URL"], openai_api_type="azure") | |
| if os.path.exists(index_path) and load_from_cache_if_possible: | |
| logging.info("找到了缓存的索引文件,加载中……") | |
| return FAISS.load_local(index_path, embeddings) | |
| else: | |
| try: | |
| documents = get_documents(file_src) | |
| logging.info("构建索引中……") | |
| with retrieve_proxy(): | |
| index = FAISS.from_documents(documents, embeddings) | |
| logging.debug("索引构建完成!") | |
| os.makedirs("./index", exist_ok=True) | |
| index.save_local(index_path) | |
| logging.debug("索引已保存至本地!") | |
| return index | |
| except Exception as e: | |
| import traceback | |
| logging.error("索引构建失败!%s", e) | |
| traceback.print_exc() | |
| return None | |