Commit
·
a187c90
1
Parent(s):
14ba298
Init
Browse files
app.py
CHANGED
|
@@ -1,64 +1,61 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
from huggingface_hub import InferenceClient
|
| 3 |
|
| 4 |
-
""
|
| 5 |
-
|
| 6 |
-
"""
|
| 7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
| 8 |
|
|
|
|
|
|
|
| 9 |
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
top_p,
|
| 17 |
):
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
if val[1]:
|
| 24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
| 25 |
|
| 26 |
-
messages.append({"role": "user", "content": message})
|
| 27 |
|
| 28 |
-
|
|
|
|
|
|
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
temperature=temperature,
|
| 35 |
-
top_p=top_p,
|
| 36 |
-
):
|
| 37 |
-
token = message.choices[0].delta.content
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
| 41 |
|
|
|
|
|
|
|
| 42 |
|
| 43 |
-
""
|
| 44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
| 45 |
-
"""
|
| 46 |
-
demo = gr.ChatInterface(
|
| 47 |
-
respond,
|
| 48 |
-
additional_inputs=[
|
| 49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
| 50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
| 51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
| 52 |
-
gr.Slider(
|
| 53 |
-
minimum=0.1,
|
| 54 |
-
maximum=1.0,
|
| 55 |
-
value=0.95,
|
| 56 |
-
step=0.05,
|
| 57 |
-
label="Top-p (nucleus sampling)",
|
| 58 |
-
),
|
| 59 |
-
],
|
| 60 |
-
)
|
| 61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
if __name__ == "__main__":
|
| 64 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import os
|
| 3 |
from huggingface_hub import InferenceClient
|
| 4 |
|
| 5 |
+
# Get the token from the "HF_TOKEN" environment variable
|
| 6 |
+
token = os.getenv("HF_TOKEN")
|
|
|
|
|
|
|
| 7 |
|
| 8 |
+
# Create a client for the Salesforce/codet5-large model using the token
|
| 9 |
+
client = InferenceClient("Salesforce/codet5-large", token=token)
|
| 10 |
|
| 11 |
+
|
| 12 |
+
def generate_code(
|
| 13 |
+
task_description,
|
| 14 |
+
max_tokens,
|
| 15 |
+
temperature,
|
| 16 |
+
top_p,
|
|
|
|
| 17 |
):
|
| 18 |
+
# 2. Create a prompt using task description
|
| 19 |
+
prompt = task_description
|
| 20 |
+
|
| 21 |
+
# 3. Generate code based on the description
|
| 22 |
+
response = client.text_generation(
|
| 23 |
+
prompt,
|
| 24 |
+
max_new_tokens=max_tokens,
|
| 25 |
+
temperature=temperature,
|
| 26 |
+
top_p=top_p,
|
| 27 |
+
)
|
| 28 |
|
| 29 |
+
# Since the response is already a string, just return it
|
| 30 |
+
generated_code = response
|
| 31 |
+
return generated_code
|
|
|
|
|
|
|
| 32 |
|
|
|
|
| 33 |
|
| 34 |
+
# 4. Create Gradio interface
|
| 35 |
+
with gr.Blocks() as demo:
|
| 36 |
+
gr.Markdown("# 🚀 CodeT5 Code Generator")
|
| 37 |
|
| 38 |
+
with gr.Row():
|
| 39 |
+
task_input = gr.Textbox(
|
| 40 |
+
lines=3, placeholder="Describe the task in natural language...", label="Task Description"
|
| 41 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
+
with gr.Row():
|
| 44 |
+
max_tokens = gr.Slider(1, 2048, value=100, step=1, label="Max Tokens")
|
| 45 |
+
temperature = gr.Slider(0.1, 4.0, value=0.7, step=0.1, label="Temperature")
|
| 46 |
+
top_p = gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p")
|
| 47 |
|
| 48 |
+
with gr.Row():
|
| 49 |
+
submit_button = gr.Button("Generate Code 🚀")
|
| 50 |
|
| 51 |
+
output = gr.Textbox(lines=10, label="Generated Code")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
+
# 5. Button click triggers code generation
|
| 54 |
+
submit_button.click(
|
| 55 |
+
generate_code,
|
| 56 |
+
inputs=[task_input, max_tokens, temperature, top_p],
|
| 57 |
+
outputs=output,
|
| 58 |
+
)
|
| 59 |
|
| 60 |
if __name__ == "__main__":
|
| 61 |
demo.launch()
|