Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -17,10 +17,7 @@ import gradio as gr
|
|
| 17 |
import torch
|
| 18 |
import yt_dlp
|
| 19 |
|
| 20 |
-
log_level = "DEBUG"
|
| 21 |
-
logging.basicConfig(level=getattr(logging, log_level), format='%(asctime)s - %(levelname)s - %(message)s')
|
| 22 |
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
|
| 23 |
-
|
| 24 |
#######
|
| 25 |
# Function Sections
|
| 26 |
#
|
|
@@ -226,7 +223,7 @@ def decide_cpugpu():
|
|
| 226 |
|
| 227 |
# check for existence of ffmpeg
|
| 228 |
def check_ffmpeg():
|
| 229 |
-
if shutil.which("ffmpeg") or (os.path.exists("
|
| 230 |
logging.debug("ffmpeg found installed on the local system, in the local PATH, or in the './Bin' folder")
|
| 231 |
pass
|
| 232 |
else:
|
|
@@ -492,7 +489,7 @@ def download_video(video_url, download_path, info_dict, download_video_flag):
|
|
| 492 |
if userOS == "Windows":
|
| 493 |
logging.debug("Running ffmpeg on Windows...")
|
| 494 |
ffmpeg_command = [
|
| 495 |
-
'
|
| 496 |
'-i', video_file_path,
|
| 497 |
'-i', audio_file_path,
|
| 498 |
'-c:v', 'copy',
|
|
@@ -890,6 +887,7 @@ def summarize_with_claude(api_key, file_path, model, custom_prompt):
|
|
| 890 |
# Summarize with Cohere
|
| 891 |
def summarize_with_cohere(api_key, file_path, model, custom_prompt):
|
| 892 |
try:
|
|
|
|
| 893 |
logging.debug("cohere: Loading JSON data")
|
| 894 |
with open(file_path, 'r') as file:
|
| 895 |
segments = json.load(file)
|
|
@@ -1245,48 +1243,14 @@ def format_file_path(file_path):
|
|
| 1245 |
return file_path if file_path and os.path.exists(file_path) else None
|
| 1246 |
|
| 1247 |
def launch_ui(demo_mode=False):
|
| 1248 |
-
def process_url(url, num_speakers, whisper_model, custom_prompt, offset, api_name, api_key, vad_filter,
|
| 1249 |
-
download_video):
|
| 1250 |
-
video_file_path = None
|
| 1251 |
-
try:
|
| 1252 |
-
results = main(url, api_name=api_name, api_key=api_key, num_speakers=num_speakers,
|
| 1253 |
-
whisper_model=whisper_model, offset=offset, vad_filter=vad_filter,
|
| 1254 |
-
download_video_flag=download_video, custom_prompt=custom_prompt)
|
| 1255 |
-
|
| 1256 |
-
if results:
|
| 1257 |
-
transcription_result = results[0]
|
| 1258 |
-
json_file_path = transcription_result['audio_file'].replace('.wav', '.segments.json')
|
| 1259 |
-
summary_file_path = transcription_result.get('summary', None)
|
| 1260 |
-
|
| 1261 |
-
video_file_path = transcription_result.get('video_path', None)
|
| 1262 |
-
if summary:
|
| 1263 |
-
transcription_result['summary'] = summary
|
| 1264 |
-
summary_file_path = json_file_path.replace('.segments.json', '_summary.txt')
|
| 1265 |
-
transcription_result['summary_file_path'] = summary_file_path
|
| 1266 |
-
logging.info(f"Summary generated using {api_name} API")
|
| 1267 |
-
save_summary_to_file(summary, json_file_path)
|
| 1268 |
-
return transcription_result['transcription'], "Summary available.", json_file_path, summary_file_path, video_file_path
|
| 1269 |
-
else:
|
| 1270 |
-
return transcription_result[
|
| 1271 |
-
'transcription'], "Summary not available.", json_file_path, None, video_file_path
|
| 1272 |
-
else:
|
| 1273 |
-
logging.warning(f"Failed to generate summary using {api_name} API")
|
| 1274 |
-
return "No results found.", "Summary not available.", None, None, None
|
| 1275 |
-
|
| 1276 |
-
except Exception as e:
|
| 1277 |
-
return str(e), "Error processing the request.", None, None, None
|
| 1278 |
-
|
| 1279 |
inputs = [
|
| 1280 |
gr.components.Textbox(label="URL", placeholder="Enter the video URL here"),
|
| 1281 |
gr.components.Number(value=2, label="Number of Speakers"),
|
| 1282 |
gr.components.Dropdown(choices=whisper_models, value="small.en", label="Whisper Model"),
|
| 1283 |
-
gr.components.Textbox(label="Custom Prompt",
|
| 1284 |
-
placeholder="Q: As a professional summarizer, create a concise and comprehensive summary of the provided text.\nA: Here is a detailed, bulleted list of the key points made in the transcribed video and supporting arguments:",
|
| 1285 |
-
lines=3),
|
| 1286 |
gr.components.Number(value=0, label="Offset"),
|
| 1287 |
gr.components.Dropdown(
|
| 1288 |
choices=["huggingface", "openai", "anthropic", "cohere", "groq", "llama", "kobold", "ooba"],
|
| 1289 |
-
value="huggingface",
|
| 1290 |
label="API Name"),
|
| 1291 |
gr.components.Textbox(label="API Key", placeholder="Enter your API key here"),
|
| 1292 |
gr.components.Checkbox(label="VAD Filter", value=False),
|
|
@@ -1296,18 +1260,43 @@ def launch_ui(demo_mode=False):
|
|
| 1296 |
outputs = [
|
| 1297 |
gr.components.Textbox(label="Transcription"),
|
| 1298 |
gr.components.Textbox(label="Summary or Status Message"),
|
| 1299 |
-
gr.components.File(label="Download Transcription as JSON", visible=lambda x: x
|
| 1300 |
-
gr.components.File(label="Download Summary as Text", visible=lambda x: x
|
| 1301 |
gr.components.File(label="Download Video", visible=lambda x: x is not None)
|
| 1302 |
]
|
| 1303 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1304 |
iface = gr.Interface(
|
| 1305 |
fn=process_url,
|
| 1306 |
inputs=inputs,
|
| 1307 |
outputs=outputs,
|
| 1308 |
title="Video Transcription and Summarization",
|
| 1309 |
-
description="Submit a video URL for transcription and summarization. Ensure you input all necessary information including API keys."
|
| 1310 |
-
theme="bethecloud/storj_theme" # Adjust theme as necessary
|
| 1311 |
)
|
| 1312 |
|
| 1313 |
iface.launch(share=False)
|
|
@@ -1386,7 +1375,6 @@ a = """def launch_ui(demo_mode=False):
|
|
| 1386 |
|
| 1387 |
def main(input_path, api_name=None, api_key=None, num_speakers=2, whisper_model="small.en", offset=0, vad_filter=False,
|
| 1388 |
download_video_flag=False, demo_mode=False, custom_prompt=None):
|
| 1389 |
-
global summary
|
| 1390 |
if input_path is None and args.user_interface:
|
| 1391 |
return []
|
| 1392 |
start_time = time.monotonic()
|
|
@@ -1451,7 +1439,6 @@ def main(input_path, api_name=None, api_key=None, num_speakers=2, whisper_model=
|
|
| 1451 |
json_file_path = audio_file.replace('.wav', '.segments.json')
|
| 1452 |
if api_name.lower() == 'openai':
|
| 1453 |
api_key = openai_api_key
|
| 1454 |
-
logging.debug(f"MAIN: API Key in main: {api_key}")
|
| 1455 |
try:
|
| 1456 |
logging.debug(f"MAIN: trying to summarize with openAI")
|
| 1457 |
summary = summarize_with_openai(api_key, json_file_path, openai_model, custom_prompt)
|
|
@@ -1541,16 +1528,15 @@ if __name__ == "__main__":
|
|
| 1541 |
help='Whisper model (default: small.en)')
|
| 1542 |
parser.add_argument('-off', '--offset', type=int, default=0, help='Offset in seconds (default: 0)')
|
| 1543 |
parser.add_argument('-vad', '--vad_filter', action='store_true', help='Enable VAD filter')
|
| 1544 |
-
|
| 1545 |
-
|
| 1546 |
-
choices=['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'], help='Log level (default: DEBUG)')
|
| 1547 |
parser.add_argument('-ui', '--user_interface', action='store_true', help='Launch the Gradio user interface')
|
| 1548 |
parser.add_argument('-demo', '--demo_mode', action='store_true', help='Enable demo mode')
|
| 1549 |
parser.add_argument('-prompt', '--custom_prompt', type=str,
|
| 1550 |
help='Pass in a custom prompt to be used in place of the existing one.(Probably should just modify the script itself...)')
|
| 1551 |
# parser.add_argument('--log_file', action=str, help='Where to save logfile (non-default)')
|
| 1552 |
args = parser.parse_args()
|
| 1553 |
-
|
| 1554 |
custom_prompt = args.custom_prompt
|
| 1555 |
if custom_prompt == "":
|
| 1556 |
logging.debug(f"Custom prompt defined, will use \n\nf{custom_prompt} \n\nas the prompt")
|
|
@@ -1568,18 +1554,18 @@ if __name__ == "__main__":
|
|
| 1568 |
# Since this is running in HF....
|
| 1569 |
args.user_interface = True
|
| 1570 |
if args.user_interface:
|
| 1571 |
-
log_level = "DEBUG"
|
| 1572 |
-
logging.basicConfig(level=getattr(logging, log_level), format='%(asctime)s - %(levelname)s - %(message)s')
|
| 1573 |
launch_ui(demo_mode=args.demo_mode)
|
| 1574 |
else:
|
| 1575 |
if not args.input_path:
|
| 1576 |
parser.print_help()
|
| 1577 |
sys.exit(1)
|
| 1578 |
|
| 1579 |
-
logging.
|
|
|
|
| 1580 |
logging.info('Starting the transcription and summarization process.')
|
| 1581 |
logging.info(f'Input path: {args.input_path}')
|
| 1582 |
logging.info(f'API Name: {args.api_name}')
|
|
|
|
| 1583 |
logging.info(f'Number of speakers: {args.num_speakers}')
|
| 1584 |
logging.info(f'Whisper model: {args.whisper_model}')
|
| 1585 |
logging.info(f'Offset: {args.offset}')
|
|
|
|
| 17 |
import torch
|
| 18 |
import yt_dlp
|
| 19 |
|
|
|
|
|
|
|
| 20 |
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
|
|
|
|
| 21 |
#######
|
| 22 |
# Function Sections
|
| 23 |
#
|
|
|
|
| 223 |
|
| 224 |
# check for existence of ffmpeg
|
| 225 |
def check_ffmpeg():
|
| 226 |
+
if shutil.which("ffmpeg") or (os.path.exists("Bin") and os.path.isfile(".\\Bin\\ffmpeg.exe")):
|
| 227 |
logging.debug("ffmpeg found installed on the local system, in the local PATH, or in the './Bin' folder")
|
| 228 |
pass
|
| 229 |
else:
|
|
|
|
| 489 |
if userOS == "Windows":
|
| 490 |
logging.debug("Running ffmpeg on Windows...")
|
| 491 |
ffmpeg_command = [
|
| 492 |
+
'.\\Bin\\ffmpeg.exe',
|
| 493 |
'-i', video_file_path,
|
| 494 |
'-i', audio_file_path,
|
| 495 |
'-c:v', 'copy',
|
|
|
|
| 887 |
# Summarize with Cohere
|
| 888 |
def summarize_with_cohere(api_key, file_path, model, custom_prompt):
|
| 889 |
try:
|
| 890 |
+
logging.basicConfig(level=logging.DEBUG)
|
| 891 |
logging.debug("cohere: Loading JSON data")
|
| 892 |
with open(file_path, 'r') as file:
|
| 893 |
segments = json.load(file)
|
|
|
|
| 1243 |
return file_path if file_path and os.path.exists(file_path) else None
|
| 1244 |
|
| 1245 |
def launch_ui(demo_mode=False):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1246 |
inputs = [
|
| 1247 |
gr.components.Textbox(label="URL", placeholder="Enter the video URL here"),
|
| 1248 |
gr.components.Number(value=2, label="Number of Speakers"),
|
| 1249 |
gr.components.Dropdown(choices=whisper_models, value="small.en", label="Whisper Model"),
|
| 1250 |
+
gr.components.Textbox(label="Custom Prompt", placeholder="Q: As a professional summarizer, create a concise and comprehensive summary of the provided text.\nA: Here is a detailed, bulleted list of the key points made in the transcribed video and supporting arguments:", lines=3),
|
|
|
|
|
|
|
| 1251 |
gr.components.Number(value=0, label="Offset"),
|
| 1252 |
gr.components.Dropdown(
|
| 1253 |
choices=["huggingface", "openai", "anthropic", "cohere", "groq", "llama", "kobold", "ooba"],
|
|
|
|
| 1254 |
label="API Name"),
|
| 1255 |
gr.components.Textbox(label="API Key", placeholder="Enter your API key here"),
|
| 1256 |
gr.components.Checkbox(label="VAD Filter", value=False),
|
|
|
|
| 1260 |
outputs = [
|
| 1261 |
gr.components.Textbox(label="Transcription"),
|
| 1262 |
gr.components.Textbox(label="Summary or Status Message"),
|
| 1263 |
+
gr.components.File(label="Download Transcription as JSON", visible=lambda x: x != "File not available"),
|
| 1264 |
+
gr.components.File(label="Download Summary as Text", visible=lambda x: x != "File not available"),
|
| 1265 |
gr.components.File(label="Download Video", visible=lambda x: x is not None)
|
| 1266 |
]
|
| 1267 |
|
| 1268 |
+
def process_url(url, num_speakers, whisper_model, custom_prompt, offset, api_name, api_key, vad_filter,
|
| 1269 |
+
download_video):
|
| 1270 |
+
video_file_path = None
|
| 1271 |
+
try:
|
| 1272 |
+
results = main(url, api_name=api_name, api_key=api_key, num_speakers=num_speakers,
|
| 1273 |
+
whisper_model=whisper_model, offset=offset, vad_filter=vad_filter,
|
| 1274 |
+
download_video_flag=download_video, custom_prompt=custom_prompt)
|
| 1275 |
+
if results:
|
| 1276 |
+
transcription_result = results[0]
|
| 1277 |
+
json_file_path = transcription_result['audio_file'].replace('.wav', '.segments.json')
|
| 1278 |
+
summary_file_path = json_file_path.replace('.segments.json', '_summary.txt')
|
| 1279 |
+
|
| 1280 |
+
json_file_path = format_file_path(json_file_path)
|
| 1281 |
+
summary_file_path = format_file_path(summary_file_path)
|
| 1282 |
+
|
| 1283 |
+
if summary_file_path and os.path.exists(summary_file_path):
|
| 1284 |
+
return transcription_result[
|
| 1285 |
+
'transcription'], "Summary available", json_file_path, summary_file_path, video_file_path
|
| 1286 |
+
else:
|
| 1287 |
+
return transcription_result[
|
| 1288 |
+
'transcription'], "Summary not available", json_file_path, None, video_file_path
|
| 1289 |
+
else:
|
| 1290 |
+
return "No results found.", "Summary not available", None, None, None
|
| 1291 |
+
except Exception as e:
|
| 1292 |
+
return str(e), "Error processing the request.", None, None, None
|
| 1293 |
+
|
| 1294 |
iface = gr.Interface(
|
| 1295 |
fn=process_url,
|
| 1296 |
inputs=inputs,
|
| 1297 |
outputs=outputs,
|
| 1298 |
title="Video Transcription and Summarization",
|
| 1299 |
+
description="Submit a video URL for transcription and summarization. Ensure you input all necessary information including API keys."
|
|
|
|
| 1300 |
)
|
| 1301 |
|
| 1302 |
iface.launch(share=False)
|
|
|
|
| 1375 |
|
| 1376 |
def main(input_path, api_name=None, api_key=None, num_speakers=2, whisper_model="small.en", offset=0, vad_filter=False,
|
| 1377 |
download_video_flag=False, demo_mode=False, custom_prompt=None):
|
|
|
|
| 1378 |
if input_path is None and args.user_interface:
|
| 1379 |
return []
|
| 1380 |
start_time = time.monotonic()
|
|
|
|
| 1439 |
json_file_path = audio_file.replace('.wav', '.segments.json')
|
| 1440 |
if api_name.lower() == 'openai':
|
| 1441 |
api_key = openai_api_key
|
|
|
|
| 1442 |
try:
|
| 1443 |
logging.debug(f"MAIN: trying to summarize with openAI")
|
| 1444 |
summary = summarize_with_openai(api_key, json_file_path, openai_model, custom_prompt)
|
|
|
|
| 1528 |
help='Whisper model (default: small.en)')
|
| 1529 |
parser.add_argument('-off', '--offset', type=int, default=0, help='Offset in seconds (default: 0)')
|
| 1530 |
parser.add_argument('-vad', '--vad_filter', action='store_true', help='Enable VAD filter')
|
| 1531 |
+
parser.add_argument('-log', '--log_level', type=str, default='INFO',
|
| 1532 |
+
choices=['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'], help='Log level (default: INFO)')
|
|
|
|
| 1533 |
parser.add_argument('-ui', '--user_interface', action='store_true', help='Launch the Gradio user interface')
|
| 1534 |
parser.add_argument('-demo', '--demo_mode', action='store_true', help='Enable demo mode')
|
| 1535 |
parser.add_argument('-prompt', '--custom_prompt', type=str,
|
| 1536 |
help='Pass in a custom prompt to be used in place of the existing one.(Probably should just modify the script itself...)')
|
| 1537 |
# parser.add_argument('--log_file', action=str, help='Where to save logfile (non-default)')
|
| 1538 |
args = parser.parse_args()
|
| 1539 |
+
|
| 1540 |
custom_prompt = args.custom_prompt
|
| 1541 |
if custom_prompt == "":
|
| 1542 |
logging.debug(f"Custom prompt defined, will use \n\nf{custom_prompt} \n\nas the prompt")
|
|
|
|
| 1554 |
# Since this is running in HF....
|
| 1555 |
args.user_interface = True
|
| 1556 |
if args.user_interface:
|
|
|
|
|
|
|
| 1557 |
launch_ui(demo_mode=args.demo_mode)
|
| 1558 |
else:
|
| 1559 |
if not args.input_path:
|
| 1560 |
parser.print_help()
|
| 1561 |
sys.exit(1)
|
| 1562 |
|
| 1563 |
+
logging.basicConfig(level=getattr(logging, args.log_level), format='%(asctime)s - %(levelname)s - %(message)s')
|
| 1564 |
+
|
| 1565 |
logging.info('Starting the transcription and summarization process.')
|
| 1566 |
logging.info(f'Input path: {args.input_path}')
|
| 1567 |
logging.info(f'API Name: {args.api_name}')
|
| 1568 |
+
logging.debug(f'API Key: {args.api_key}') # ehhhhh
|
| 1569 |
logging.info(f'Number of speakers: {args.num_speakers}')
|
| 1570 |
logging.info(f'Whisper model: {args.whisper_model}')
|
| 1571 |
logging.info(f'Offset: {args.offset}')
|