Spaces:
Runtime error
Runtime error
Upload 3 files
Browse files
App_Function_Libraries/RAG/ChromaDB_Library.py
CHANGED
|
@@ -11,6 +11,7 @@ from itertools import islice
|
|
| 11 |
#
|
| 12 |
# Local Imports:
|
| 13 |
from App_Function_Libraries.Chunk_Lib import chunk_for_embedding, chunk_options
|
|
|
|
| 14 |
from App_Function_Libraries.DB.SQLite_DB import process_chunks
|
| 15 |
from App_Function_Libraries.RAG.Embeddings_Create import create_embeddings_batch
|
| 16 |
# FIXME - related to Chunking
|
|
@@ -47,6 +48,40 @@ embedding_api_url = config.get('Embeddings', 'api_url', fallback='')
|
|
| 47 |
#
|
| 48 |
# Functions:
|
| 49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
def batched(iterable, n):
|
| 51 |
"Batch data into lists of length n. The last batch may be shorter."
|
| 52 |
it = iter(iterable)
|
|
@@ -57,27 +92,55 @@ def batched(iterable, n):
|
|
| 57 |
yield batch
|
| 58 |
|
| 59 |
|
| 60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
# FIXME - update all uses to reflect 'api_name' parameter
|
| 62 |
def process_and_store_content(database, content: str, collection_name: str, media_id: int, file_name: str,
|
| 63 |
-
create_embeddings: bool =
|
| 64 |
-
chunk_options
|
| 65 |
embedding_model: str = None, embedding_api_url: str = None):
|
| 66 |
try:
|
| 67 |
logger.info(f"Processing content for media_id {media_id} in collection {collection_name}")
|
| 68 |
|
| 69 |
-
|
| 70 |
-
if create_summary and api_name:
|
| 71 |
-
full_summary = summarize(content, None, api_name, None, None, None)
|
| 72 |
-
|
| 73 |
-
chunks = chunk_for_embedding(content, file_name, full_summary, chunk_options)
|
| 74 |
|
| 75 |
# Process chunks synchronously
|
| 76 |
process_chunks(database, chunks, media_id)
|
| 77 |
|
| 78 |
if create_embeddings:
|
| 79 |
-
texts = [
|
| 80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
ids = [f"{media_id}_chunk_{i}" for i in range(1, len(chunks) + 1)]
|
| 82 |
metadatas = [{
|
| 83 |
"media_id": str(media_id),
|
|
@@ -85,11 +148,17 @@ def process_and_store_content(database, content: str, collection_name: str, medi
|
|
| 85 |
"total_chunks": len(chunks),
|
| 86 |
"start_index": int(chunk['metadata']['start_index']),
|
| 87 |
"end_index": int(chunk['metadata']['end_index']),
|
| 88 |
-
"file_name": str(file_name),
|
| 89 |
-
"relative_position": float(chunk['metadata']['relative_position'])
|
|
|
|
|
|
|
|
|
|
| 90 |
} for i, chunk in enumerate(chunks, 1)]
|
| 91 |
|
| 92 |
-
store_in_chroma(collection_name,
|
|
|
|
|
|
|
|
|
|
| 93 |
|
| 94 |
# Update full-text search index
|
| 95 |
database.execute_query(
|
|
@@ -168,11 +237,13 @@ def store_in_chroma(collection_name: str, texts: List[str], embeddings: List[Lis
|
|
| 168 |
|
| 169 |
# Verify storage
|
| 170 |
for doc_id in ids:
|
| 171 |
-
result = collection.get(ids=[doc_id], include=["embeddings"])
|
| 172 |
if not result['embeddings'] or result['embeddings'][0] is None:
|
| 173 |
logging.error(f"Failed to store embedding for {doc_id}")
|
| 174 |
else:
|
| 175 |
logging.info(f"Embedding stored successfully for {doc_id}")
|
|
|
|
|
|
|
| 176 |
|
| 177 |
except Exception as e:
|
| 178 |
logging.error(f"Error storing embeddings in ChromaDB: {str(e)}")
|
|
@@ -194,9 +265,9 @@ def vector_search(collection_name: str, query: str, k: int = 10) -> List[Dict[st
|
|
| 194 |
logging.error(f"Error in vector_search: {str(e)}")
|
| 195 |
raise
|
| 196 |
|
| 197 |
-
def schedule_embedding(media_id: int, content: str, media_name: str
|
| 198 |
try:
|
| 199 |
-
chunks = chunk_for_embedding(content, media_name,
|
| 200 |
texts = [chunk['text'] for chunk in chunks]
|
| 201 |
embeddings = create_embeddings_batch(texts, embedding_provider, embedding_model, embedding_api_url)
|
| 202 |
ids = [f"{media_id}_chunk_{i}" for i in range(len(chunks))]
|
|
|
|
| 11 |
#
|
| 12 |
# Local Imports:
|
| 13 |
from App_Function_Libraries.Chunk_Lib import chunk_for_embedding, chunk_options
|
| 14 |
+
from App_Function_Libraries.DB.DB_Manager import get_unprocessed_media, mark_media_as_processed
|
| 15 |
from App_Function_Libraries.DB.SQLite_DB import process_chunks
|
| 16 |
from App_Function_Libraries.RAG.Embeddings_Create import create_embeddings_batch
|
| 17 |
# FIXME - related to Chunking
|
|
|
|
| 48 |
#
|
| 49 |
# Functions:
|
| 50 |
|
| 51 |
+
|
| 52 |
+
# Function to preprocess and store all existing content in the database
|
| 53 |
+
def preprocess_all_content(database, create_contextualized=True, api_name="gpt-3.5-turbo"):
|
| 54 |
+
unprocessed_media = get_unprocessed_media(db=database)
|
| 55 |
+
total_media = len(unprocessed_media)
|
| 56 |
+
|
| 57 |
+
for index, row in enumerate(unprocessed_media, 1):
|
| 58 |
+
media_id, content, media_type, file_name = row
|
| 59 |
+
collection_name = f"{media_type}_{media_id}"
|
| 60 |
+
|
| 61 |
+
logger.info(f"Processing media {index} of {total_media}: ID {media_id}, Type {media_type}")
|
| 62 |
+
|
| 63 |
+
try:
|
| 64 |
+
process_and_store_content(
|
| 65 |
+
database=database,
|
| 66 |
+
content=content,
|
| 67 |
+
collection_name=collection_name,
|
| 68 |
+
media_id=media_id,
|
| 69 |
+
file_name=file_name or f"{media_type}_{media_id}",
|
| 70 |
+
create_embeddings=True,
|
| 71 |
+
create_contextualized=create_contextualized,
|
| 72 |
+
api_name=api_name
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
# Mark the media as processed in the database
|
| 76 |
+
mark_media_as_processed(database, media_id)
|
| 77 |
+
|
| 78 |
+
logger.info(f"Successfully processed media ID {media_id}")
|
| 79 |
+
except Exception as e:
|
| 80 |
+
logger.error(f"Error processing media ID {media_id}: {str(e)}")
|
| 81 |
+
|
| 82 |
+
logger.info("Finished preprocessing all unprocessed content")
|
| 83 |
+
|
| 84 |
+
|
| 85 |
def batched(iterable, n):
|
| 86 |
"Batch data into lists of length n. The last batch may be shorter."
|
| 87 |
it = iter(iterable)
|
|
|
|
| 92 |
yield batch
|
| 93 |
|
| 94 |
|
| 95 |
+
def situate_context(api_name, doc_content: str, chunk_content: str) -> str:
|
| 96 |
+
doc_content_prompt = f"""
|
| 97 |
+
<document>
|
| 98 |
+
{doc_content}
|
| 99 |
+
</document>
|
| 100 |
+
"""
|
| 101 |
+
|
| 102 |
+
chunk_context_prompt = f"""
|
| 103 |
+
\n\n\n\n\n
|
| 104 |
+
Here is the chunk we want to situate within the whole document
|
| 105 |
+
<chunk>
|
| 106 |
+
{chunk_content}
|
| 107 |
+
</chunk>
|
| 108 |
+
|
| 109 |
+
Please give a short succinct context to situate this chunk within the overall document for the purposes of improving search retrieval of the chunk.
|
| 110 |
+
Answer only with the succinct context and nothing else.
|
| 111 |
+
"""
|
| 112 |
+
|
| 113 |
+
response = summarize(chunk_context_prompt, doc_content_prompt, api_name, api_key=None, temp=0, system_message=None)
|
| 114 |
+
return response
|
| 115 |
+
|
| 116 |
+
|
| 117 |
# FIXME - update all uses to reflect 'api_name' parameter
|
| 118 |
def process_and_store_content(database, content: str, collection_name: str, media_id: int, file_name: str,
|
| 119 |
+
create_embeddings: bool = True, create_contextualized: bool = True, api_name: str = "gpt-3.5-turbo",
|
| 120 |
+
chunk_options = None, embedding_provider: str = None,
|
| 121 |
embedding_model: str = None, embedding_api_url: str = None):
|
| 122 |
try:
|
| 123 |
logger.info(f"Processing content for media_id {media_id} in collection {collection_name}")
|
| 124 |
|
| 125 |
+
chunks = chunk_for_embedding(content, file_name, chunk_options)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
|
| 127 |
# Process chunks synchronously
|
| 128 |
process_chunks(database, chunks, media_id)
|
| 129 |
|
| 130 |
if create_embeddings:
|
| 131 |
+
texts = []
|
| 132 |
+
contextualized_chunks = []
|
| 133 |
+
for chunk in chunks:
|
| 134 |
+
chunk_text = chunk['text']
|
| 135 |
+
if create_contextualized:
|
| 136 |
+
context = situate_context(api_name, content, chunk_text)
|
| 137 |
+
contextualized_text = f"{chunk_text}\n\nContextual Summary: {context}"
|
| 138 |
+
contextualized_chunks.append(contextualized_text)
|
| 139 |
+
else:
|
| 140 |
+
contextualized_chunks.append(chunk_text)
|
| 141 |
+
texts.append(chunk_text) # Store original text for database
|
| 142 |
+
|
| 143 |
+
embeddings = create_embeddings_batch(contextualized_chunks, embedding_provider, embedding_model, embedding_api_url)
|
| 144 |
ids = [f"{media_id}_chunk_{i}" for i in range(1, len(chunks) + 1)]
|
| 145 |
metadatas = [{
|
| 146 |
"media_id": str(media_id),
|
|
|
|
| 148 |
"total_chunks": len(chunks),
|
| 149 |
"start_index": int(chunk['metadata']['start_index']),
|
| 150 |
"end_index": int(chunk['metadata']['end_index']),
|
| 151 |
+
"file_name": str(chunk['metadata']['file_name']),
|
| 152 |
+
"relative_position": float(chunk['metadata']['relative_position']),
|
| 153 |
+
"contextualized": create_contextualized,
|
| 154 |
+
"original_text": chunk['text'],
|
| 155 |
+
"contextual_summary": contextualized_chunks[i-1].split("\n\nContextual Summary: ")[-1] if create_contextualized else ""
|
| 156 |
} for i, chunk in enumerate(chunks, 1)]
|
| 157 |
|
| 158 |
+
store_in_chroma(collection_name, contextualized_chunks, embeddings, ids, metadatas)
|
| 159 |
+
|
| 160 |
+
# Mark the media as processed
|
| 161 |
+
mark_media_as_processed(database, media_id)
|
| 162 |
|
| 163 |
# Update full-text search index
|
| 164 |
database.execute_query(
|
|
|
|
| 237 |
|
| 238 |
# Verify storage
|
| 239 |
for doc_id in ids:
|
| 240 |
+
result = collection.get(ids=[doc_id], include=["documents", "embeddings", "metadatas"])
|
| 241 |
if not result['embeddings'] or result['embeddings'][0] is None:
|
| 242 |
logging.error(f"Failed to store embedding for {doc_id}")
|
| 243 |
else:
|
| 244 |
logging.info(f"Embedding stored successfully for {doc_id}")
|
| 245 |
+
logging.debug(f"Stored document: {result['documents'][0][:100]}...")
|
| 246 |
+
logging.debug(f"Stored metadata: {result['metadatas'][0]}")
|
| 247 |
|
| 248 |
except Exception as e:
|
| 249 |
logging.error(f"Error storing embeddings in ChromaDB: {str(e)}")
|
|
|
|
| 265 |
logging.error(f"Error in vector_search: {str(e)}")
|
| 266 |
raise
|
| 267 |
|
| 268 |
+
def schedule_embedding(media_id: int, content: str, media_name: str):
|
| 269 |
try:
|
| 270 |
+
chunks = chunk_for_embedding(content, media_name, chunk_options)
|
| 271 |
texts = [chunk['text'] for chunk in chunks]
|
| 272 |
embeddings = create_embeddings_batch(texts, embedding_provider, embedding_model, embedding_api_url)
|
| 273 |
ids = [f"{media_id}_chunk_{i}" for i in range(len(chunks))]
|
App_Function_Libraries/RAG/Embeddings_Create.py
CHANGED
|
@@ -35,7 +35,6 @@ overlap = loaded_config['Embeddings']['overlap']
|
|
| 35 |
|
| 36 |
# FIXME - Add logging
|
| 37 |
|
| 38 |
-
|
| 39 |
class HuggingFaceEmbedder:
|
| 40 |
def __init__(self, model_name, timeout_seconds=120): # Default timeout of 2 minutes
|
| 41 |
self.model_name = model_name
|
|
@@ -154,6 +153,7 @@ List[List[float]]:
|
|
| 154 |
else:
|
| 155 |
raise ValueError(f"Unsupported embedding provider: {provider}")
|
| 156 |
|
|
|
|
| 157 |
def create_embedding(text: str, provider: str, model: str, api_url: str) -> List[float]:
|
| 158 |
return create_embeddings_batch([text], provider, model, api_url)[0]
|
| 159 |
|
|
@@ -185,40 +185,6 @@ def create_openai_embedding(text: str, model: str) -> List[float]:
|
|
| 185 |
embedding = get_openai_embeddings(text, model)
|
| 186 |
return embedding
|
| 187 |
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
#Dead
|
| 192 |
-
# def create_local_embedding(text: str, model: str, api_url: str, api_key: str) -> List[float]:
|
| 193 |
-
# response = requests.post(
|
| 194 |
-
# api_url,
|
| 195 |
-
# json={"text": text, "model": model},
|
| 196 |
-
# headers={"Authorization": f"Bearer {api_key}"}
|
| 197 |
-
# )
|
| 198 |
-
# response.raise_for_status()
|
| 199 |
-
# return response.json().get('embedding', None)
|
| 200 |
-
|
| 201 |
-
# Dead
|
| 202 |
-
# def create_llamacpp_embedding(text: str, api_url: str) -> List[float]:
|
| 203 |
-
# response = requests.post(
|
| 204 |
-
# api_url,
|
| 205 |
-
# json={"input": text}
|
| 206 |
-
# )
|
| 207 |
-
# response.raise_for_status()
|
| 208 |
-
# return response.json()['embedding']
|
| 209 |
-
|
| 210 |
-
# dead
|
| 211 |
-
# def create_huggingface_embedding(text: str, model: str) -> List[float]:
|
| 212 |
-
# tokenizer = AutoTokenizer.from_pretrained(model)
|
| 213 |
-
# model = AutoModel.from_pretrained(model)
|
| 214 |
-
#
|
| 215 |
-
# inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
| 216 |
-
# with torch.no_grad():
|
| 217 |
-
# outputs = model(**inputs)
|
| 218 |
-
#
|
| 219 |
-
# embeddings = outputs.last_hidden_state.mean(dim=1)
|
| 220 |
-
# return embeddings[0].tolist()
|
| 221 |
-
|
| 222 |
#
|
| 223 |
# End of File.
|
| 224 |
#######################################################################################################################
|
|
|
|
| 35 |
|
| 36 |
# FIXME - Add logging
|
| 37 |
|
|
|
|
| 38 |
class HuggingFaceEmbedder:
|
| 39 |
def __init__(self, model_name, timeout_seconds=120): # Default timeout of 2 minutes
|
| 40 |
self.model_name = model_name
|
|
|
|
| 153 |
else:
|
| 154 |
raise ValueError(f"Unsupported embedding provider: {provider}")
|
| 155 |
|
| 156 |
+
|
| 157 |
def create_embedding(text: str, provider: str, model: str, api_url: str) -> List[float]:
|
| 158 |
return create_embeddings_batch([text], provider, model, api_url)[0]
|
| 159 |
|
|
|
|
| 185 |
embedding = get_openai_embeddings(text, model)
|
| 186 |
return embedding
|
| 187 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 188 |
#
|
| 189 |
# End of File.
|
| 190 |
#######################################################################################################################
|
App_Function_Libraries/RAG/RAG_Libary_2.py
CHANGED
|
@@ -9,8 +9,7 @@ from typing import Dict, Any, List, Optional
|
|
| 9 |
# Local Imports
|
| 10 |
from App_Function_Libraries.RAG.ChromaDB_Library import process_and_store_content, vector_search, chroma_client
|
| 11 |
from App_Function_Libraries.Web_Scraping.Article_Extractor_Lib import scrape_article
|
| 12 |
-
from App_Function_Libraries.DB.DB_Manager import
|
| 13 |
-
fetch_keywords_for_media
|
| 14 |
from App_Function_Libraries.Utils.Utils import load_comprehensive_config
|
| 15 |
#
|
| 16 |
# 3rd-Party Imports
|
|
@@ -32,71 +31,79 @@ config = configparser.ConfigParser()
|
|
| 32 |
# Read the configuration file
|
| 33 |
config.read('config.txt')
|
| 34 |
|
| 35 |
-
#
|
| 36 |
-
def
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
|
| 101 |
|
| 102 |
|
|
@@ -213,21 +220,6 @@ def generate_answer(api_choice: str, context: str, query: str) -> str:
|
|
| 213 |
else:
|
| 214 |
raise ValueError(f"Unsupported API choice: {api_choice}")
|
| 215 |
|
| 216 |
-
# Function to preprocess and store all existing content in the database
|
| 217 |
-
def preprocess_all_content():
|
| 218 |
-
unprocessed_media = get_unprocessed_media()
|
| 219 |
-
for row in unprocessed_media:
|
| 220 |
-
media_id = row[0]
|
| 221 |
-
content = row[1]
|
| 222 |
-
media_type = row[2]
|
| 223 |
-
collection_name = f"{media_type}_{media_id}"
|
| 224 |
-
# FIXME
|
| 225 |
-
# def process_and_store_content(content: str, collection_name: str, media_id: int, file_name: str,
|
| 226 |
-
# create_embeddings: bool = False, create_summary: bool = False,
|
| 227 |
-
# api_name: str = None):
|
| 228 |
-
process_and_store_content(content, collection_name, media_id, "")
|
| 229 |
-
|
| 230 |
-
|
| 231 |
def perform_vector_search(query: str, relevant_media_ids: List[str] = None) -> List[Dict[str, Any]]:
|
| 232 |
all_collections = chroma_client.list_collections()
|
| 233 |
vector_results = []
|
|
@@ -303,30 +295,42 @@ def extract_media_id_from_result(result: str) -> Optional[int]:
|
|
| 303 |
logging.error(f"Failed to extract media_id from result: {result}")
|
| 304 |
return None
|
| 305 |
|
|
|
|
|
|
|
|
|
|
| 306 |
|
| 307 |
|
| 308 |
-
|
| 309 |
-
#
|
| 310 |
-
#
|
| 311 |
-
#
|
| 312 |
#
|
| 313 |
-
#
|
| 314 |
-
#
|
|
|
|
| 315 |
#
|
| 316 |
-
#
|
| 317 |
-
# Store embeddings in ChromaDB
|
| 318 |
-
# preprocess_all_content() or create_embeddings()
|
| 319 |
#
|
| 320 |
-
#
|
| 321 |
-
#
|
| 322 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 323 |
#
|
| 324 |
-
#
|
| 325 |
-
#
|
| 326 |
-
# print(result['answer'])
|
| 327 |
#
|
| 328 |
-
|
| 329 |
-
|
|
|
|
|
|
|
|
|
|
| 330 |
|
| 331 |
############################################################################################################
|
| 332 |
#
|
|
|
|
| 9 |
# Local Imports
|
| 10 |
from App_Function_Libraries.RAG.ChromaDB_Library import process_and_store_content, vector_search, chroma_client
|
| 11 |
from App_Function_Libraries.Web_Scraping.Article_Extractor_Lib import scrape_article
|
| 12 |
+
from App_Function_Libraries.DB.DB_Manager import search_db, fetch_keywords_for_media
|
|
|
|
| 13 |
from App_Function_Libraries.Utils.Utils import load_comprehensive_config
|
| 14 |
#
|
| 15 |
# 3rd-Party Imports
|
|
|
|
| 31 |
# Read the configuration file
|
| 32 |
config.read('config.txt')
|
| 33 |
|
| 34 |
+
# RAG pipeline function for web scraping
|
| 35 |
+
# def rag_web_scraping_pipeline(url: str, query: str, api_choice=None) -> Dict[str, Any]:
|
| 36 |
+
# try:
|
| 37 |
+
# # Extract content
|
| 38 |
+
# try:
|
| 39 |
+
# article_data = scrape_article(url)
|
| 40 |
+
# content = article_data['content']
|
| 41 |
+
# title = article_data['title']
|
| 42 |
+
# except Exception as e:
|
| 43 |
+
# logging.error(f"Error scraping article: {str(e)}")
|
| 44 |
+
# return {"error": "Failed to scrape article", "details": str(e)}
|
| 45 |
+
#
|
| 46 |
+
# # Store the article in the database and get the media_id
|
| 47 |
+
# try:
|
| 48 |
+
# media_id = add_media_to_database(url, title, 'article', content)
|
| 49 |
+
# except Exception as e:
|
| 50 |
+
# logging.error(f"Error adding article to database: {str(e)}")
|
| 51 |
+
# return {"error": "Failed to store article in database", "details": str(e)}
|
| 52 |
+
#
|
| 53 |
+
# # Process and store content
|
| 54 |
+
# collection_name = f"article_{media_id}"
|
| 55 |
+
# try:
|
| 56 |
+
# # Assuming you have a database object available, let's call it 'db'
|
| 57 |
+
# db = get_database_connection()
|
| 58 |
+
#
|
| 59 |
+
# process_and_store_content(
|
| 60 |
+
# database=db,
|
| 61 |
+
# content=content,
|
| 62 |
+
# collection_name=collection_name,
|
| 63 |
+
# media_id=media_id,
|
| 64 |
+
# file_name=title,
|
| 65 |
+
# create_embeddings=True,
|
| 66 |
+
# create_contextualized=True,
|
| 67 |
+
# api_name=api_choice
|
| 68 |
+
# )
|
| 69 |
+
# except Exception as e:
|
| 70 |
+
# logging.error(f"Error processing and storing content: {str(e)}")
|
| 71 |
+
# return {"error": "Failed to process and store content", "details": str(e)}
|
| 72 |
+
#
|
| 73 |
+
# # Perform searches
|
| 74 |
+
# try:
|
| 75 |
+
# vector_results = vector_search(collection_name, query, k=5)
|
| 76 |
+
# fts_results = search_db(query, ["content"], "", page=1, results_per_page=5)
|
| 77 |
+
# except Exception as e:
|
| 78 |
+
# logging.error(f"Error performing searches: {str(e)}")
|
| 79 |
+
# return {"error": "Failed to perform searches", "details": str(e)}
|
| 80 |
+
#
|
| 81 |
+
# # Combine results with error handling for missing 'content' key
|
| 82 |
+
# all_results = []
|
| 83 |
+
# for result in vector_results + fts_results:
|
| 84 |
+
# if isinstance(result, dict) and 'content' in result:
|
| 85 |
+
# all_results.append(result['content'])
|
| 86 |
+
# else:
|
| 87 |
+
# logging.warning(f"Unexpected result format: {result}")
|
| 88 |
+
# all_results.append(str(result))
|
| 89 |
+
#
|
| 90 |
+
# context = "\n".join(all_results)
|
| 91 |
+
#
|
| 92 |
+
# # Generate answer using the selected API
|
| 93 |
+
# try:
|
| 94 |
+
# answer = generate_answer(api_choice, context, query)
|
| 95 |
+
# except Exception as e:
|
| 96 |
+
# logging.error(f"Error generating answer: {str(e)}")
|
| 97 |
+
# return {"error": "Failed to generate answer", "details": str(e)}
|
| 98 |
+
#
|
| 99 |
+
# return {
|
| 100 |
+
# "answer": answer,
|
| 101 |
+
# "context": context
|
| 102 |
+
# }
|
| 103 |
+
#
|
| 104 |
+
# except Exception as e:
|
| 105 |
+
# logging.error(f"Unexpected error in rag_pipeline: {str(e)}")
|
| 106 |
+
# return {"error": "An unexpected error occurred", "details": str(e)}
|
| 107 |
|
| 108 |
|
| 109 |
|
|
|
|
| 220 |
else:
|
| 221 |
raise ValueError(f"Unsupported API choice: {api_choice}")
|
| 222 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 223 |
def perform_vector_search(query: str, relevant_media_ids: List[str] = None) -> List[Dict[str, Any]]:
|
| 224 |
all_collections = chroma_client.list_collections()
|
| 225 |
vector_results = []
|
|
|
|
| 295 |
logging.error(f"Failed to extract media_id from result: {result}")
|
| 296 |
return None
|
| 297 |
|
| 298 |
+
#
|
| 299 |
+
#
|
| 300 |
+
########################################################################################################################
|
| 301 |
|
| 302 |
|
| 303 |
+
# Function to preprocess and store all existing content in the database
|
| 304 |
+
# def preprocess_all_content(database, create_contextualized=True, api_name="gpt-3.5-turbo"):
|
| 305 |
+
# unprocessed_media = get_unprocessed_media()
|
| 306 |
+
# total_media = len(unprocessed_media)
|
| 307 |
#
|
| 308 |
+
# for index, row in enumerate(unprocessed_media, 1):
|
| 309 |
+
# media_id, content, media_type, file_name = row
|
| 310 |
+
# collection_name = f"{media_type}_{media_id}"
|
| 311 |
#
|
| 312 |
+
# logger.info(f"Processing media {index} of {total_media}: ID {media_id}, Type {media_type}")
|
|
|
|
|
|
|
| 313 |
#
|
| 314 |
+
# try:
|
| 315 |
+
# process_and_store_content(
|
| 316 |
+
# database=database,
|
| 317 |
+
# content=content,
|
| 318 |
+
# collection_name=collection_name,
|
| 319 |
+
# media_id=media_id,
|
| 320 |
+
# file_name=file_name or f"{media_type}_{media_id}",
|
| 321 |
+
# create_embeddings=True,
|
| 322 |
+
# create_contextualized=create_contextualized,
|
| 323 |
+
# api_name=api_name
|
| 324 |
+
# )
|
| 325 |
#
|
| 326 |
+
# # Mark the media as processed in the database
|
| 327 |
+
# mark_media_as_processed(database, media_id)
|
|
|
|
| 328 |
#
|
| 329 |
+
# logger.info(f"Successfully processed media ID {media_id}")
|
| 330 |
+
# except Exception as e:
|
| 331 |
+
# logger.error(f"Error processing media ID {media_id}: {str(e)}")
|
| 332 |
+
#
|
| 333 |
+
# logger.info("Finished preprocessing all unprocessed content")
|
| 334 |
|
| 335 |
############################################################################################################
|
| 336 |
#
|