Spaces:
Runtime error
Runtime error
Update App_Function_Libraries/Audio_Files.py
Browse files- App_Function_Libraries/Audio_Files.py +691 -628
App_Function_Libraries/Audio_Files.py
CHANGED
|
@@ -1,629 +1,692 @@
|
|
| 1 |
-
# Audio_Files.py
|
| 2 |
-
#########################################
|
| 3 |
-
# Audio Processing Library
|
| 4 |
-
# This library is used to download or load audio files from a local directory.
|
| 5 |
-
#
|
| 6 |
-
####
|
| 7 |
-
#
|
| 8 |
-
# Functions:
|
| 9 |
-
#
|
| 10 |
-
# download_audio_file(url, save_path)
|
| 11 |
-
# process_audio(
|
| 12 |
-
# process_audio_file(audio_url, audio_file, whisper_model="small.en", api_name=None, api_key=None)
|
| 13 |
-
#
|
| 14 |
-
#
|
| 15 |
-
#########################################
|
| 16 |
-
# Imports
|
| 17 |
-
import json
|
| 18 |
-
import logging
|
| 19 |
-
import
|
| 20 |
-
import
|
| 21 |
-
import tempfile
|
| 22 |
-
import uuid
|
| 23 |
-
from datetime import datetime
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
import
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
from App_Function_Libraries.
|
| 31 |
-
|
| 32 |
-
#
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
from App_Function_Libraries.
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
#
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
#
|
| 64 |
-
|
| 65 |
-
if
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
#
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
if
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
#
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
#
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
summary=summary
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
)
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
if
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
|
| 450 |
-
|
| 451 |
-
|
| 452 |
-
|
| 453 |
-
|
| 454 |
-
|
| 455 |
-
|
| 456 |
-
|
| 457 |
-
|
| 458 |
-
|
| 459 |
-
|
| 460 |
-
|
| 461 |
-
|
| 462 |
-
|
| 463 |
-
|
| 464 |
-
|
| 465 |
-
|
| 466 |
-
|
| 467 |
-
|
| 468 |
-
|
| 469 |
-
|
| 470 |
-
|
| 471 |
-
|
| 472 |
-
|
| 473 |
-
|
| 474 |
-
|
| 475 |
-
|
| 476 |
-
|
| 477 |
-
|
| 478 |
-
|
| 479 |
-
|
| 480 |
-
|
| 481 |
-
|
| 482 |
-
|
| 483 |
-
|
| 484 |
-
|
| 485 |
-
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
|
| 489 |
-
|
| 490 |
-
|
| 491 |
-
|
| 492 |
-
|
| 493 |
-
|
| 494 |
-
|
| 495 |
-
|
| 496 |
-
|
| 497 |
-
|
| 498 |
-
|
| 499 |
-
|
| 500 |
-
|
| 501 |
-
|
| 502 |
-
|
| 503 |
-
|
| 504 |
-
|
| 505 |
-
|
| 506 |
-
|
| 507 |
-
|
| 508 |
-
|
| 509 |
-
|
| 510 |
-
|
| 511 |
-
|
| 512 |
-
|
| 513 |
-
|
| 514 |
-
|
| 515 |
-
|
| 516 |
-
|
| 517 |
-
|
| 518 |
-
|
| 519 |
-
|
| 520 |
-
|
| 521 |
-
|
| 522 |
-
|
| 523 |
-
|
| 524 |
-
|
| 525 |
-
|
| 526 |
-
|
| 527 |
-
|
| 528 |
-
|
| 529 |
-
|
| 530 |
-
|
| 531 |
-
|
| 532 |
-
|
| 533 |
-
|
| 534 |
-
|
| 535 |
-
|
| 536 |
-
|
| 537 |
-
|
| 538 |
-
|
| 539 |
-
|
| 540 |
-
|
| 541 |
-
|
| 542 |
-
|
| 543 |
-
|
| 544 |
-
|
| 545 |
-
|
| 546 |
-
|
| 547 |
-
|
| 548 |
-
|
| 549 |
-
|
| 550 |
-
|
| 551 |
-
|
| 552 |
-
|
| 553 |
-
|
| 554 |
-
|
| 555 |
-
|
| 556 |
-
|
| 557 |
-
|
| 558 |
-
|
| 559 |
-
|
| 560 |
-
|
| 561 |
-
|
| 562 |
-
|
| 563 |
-
|
| 564 |
-
|
| 565 |
-
|
| 566 |
-
|
| 567 |
-
|
| 568 |
-
|
| 569 |
-
|
| 570 |
-
|
| 571 |
-
|
| 572 |
-
|
| 573 |
-
|
| 574 |
-
|
| 575 |
-
|
| 576 |
-
|
| 577 |
-
|
| 578 |
-
|
| 579 |
-
|
| 580 |
-
|
| 581 |
-
|
| 582 |
-
|
| 583 |
-
|
| 584 |
-
|
| 585 |
-
|
| 586 |
-
|
| 587 |
-
|
| 588 |
-
|
| 589 |
-
|
| 590 |
-
|
| 591 |
-
|
| 592 |
-
|
| 593 |
-
|
| 594 |
-
|
| 595 |
-
|
| 596 |
-
|
| 597 |
-
|
| 598 |
-
|
| 599 |
-
|
| 600 |
-
|
| 601 |
-
|
| 602 |
-
|
| 603 |
-
|
| 604 |
-
|
| 605 |
-
|
| 606 |
-
|
| 607 |
-
|
| 608 |
-
|
| 609 |
-
|
| 610 |
-
|
| 611 |
-
|
| 612 |
-
|
| 613 |
-
|
| 614 |
-
|
| 615 |
-
|
| 616 |
-
|
| 617 |
-
|
| 618 |
-
|
| 619 |
-
|
| 620 |
-
|
| 621 |
-
|
| 622 |
-
|
| 623 |
-
|
| 624 |
-
|
| 625 |
-
|
| 626 |
-
|
| 627 |
-
|
| 628 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 629 |
#######################################################################################################################
|
|
|
|
| 1 |
+
# Audio_Files.py
|
| 2 |
+
#########################################
|
| 3 |
+
# Audio Processing Library
|
| 4 |
+
# This library is used to download or load audio files from a local directory.
|
| 5 |
+
#
|
| 6 |
+
####
|
| 7 |
+
#
|
| 8 |
+
# Functions:
|
| 9 |
+
#
|
| 10 |
+
# download_audio_file(url, save_path)
|
| 11 |
+
# process_audio(
|
| 12 |
+
# process_audio_file(audio_url, audio_file, whisper_model="small.en", api_name=None, api_key=None)
|
| 13 |
+
#
|
| 14 |
+
#
|
| 15 |
+
#########################################
|
| 16 |
+
# Imports
|
| 17 |
+
import json
|
| 18 |
+
import logging
|
| 19 |
+
import os
|
| 20 |
+
import subprocess
|
| 21 |
+
import tempfile
|
| 22 |
+
import uuid
|
| 23 |
+
from datetime import datetime
|
| 24 |
+
from pathlib import Path
|
| 25 |
+
|
| 26 |
+
import requests
|
| 27 |
+
import yt_dlp
|
| 28 |
+
|
| 29 |
+
from App_Function_Libraries.Audio_Transcription_Lib import speech_to_text
|
| 30 |
+
from App_Function_Libraries.Chunk_Lib import improved_chunking_process
|
| 31 |
+
#
|
| 32 |
+
# Local Imports
|
| 33 |
+
from App_Function_Libraries.SQLite_DB import add_media_to_database, add_media_with_keywords, \
|
| 34 |
+
check_media_and_whisper_model
|
| 35 |
+
from App_Function_Libraries.Summarization_General_Lib import save_transcription_and_summary, perform_transcription, \
|
| 36 |
+
perform_summarization
|
| 37 |
+
from App_Function_Libraries.Utils import create_download_directory, save_segments_to_json, downloaded_files, \
|
| 38 |
+
sanitize_filename
|
| 39 |
+
from App_Function_Libraries.Video_DL_Ingestion_Lib import extract_metadata
|
| 40 |
+
|
| 41 |
+
#
|
| 42 |
+
#######################################################################################################################
|
| 43 |
+
# Function Definitions
|
| 44 |
+
#
|
| 45 |
+
|
| 46 |
+
MAX_FILE_SIZE = 500 * 1024 * 1024
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def download_audio_file(url, current_whisper_model="", use_cookies=False, cookies=None):
|
| 50 |
+
try:
|
| 51 |
+
# Check if media already exists in the database and compare whisper models
|
| 52 |
+
should_download, reason = check_media_and_whisper_model(
|
| 53 |
+
url=url,
|
| 54 |
+
current_whisper_model=current_whisper_model
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
if not should_download:
|
| 58 |
+
logging.info(f"Skipping audio download: {reason}")
|
| 59 |
+
return None
|
| 60 |
+
|
| 61 |
+
logging.info(f"Proceeding with audio download: {reason}")
|
| 62 |
+
|
| 63 |
+
# Set up the request headers
|
| 64 |
+
headers = {}
|
| 65 |
+
if use_cookies and cookies:
|
| 66 |
+
try:
|
| 67 |
+
cookie_dict = json.loads(cookies)
|
| 68 |
+
headers['Cookie'] = '; '.join([f'{k}={v}' for k, v in cookie_dict.items()])
|
| 69 |
+
except json.JSONDecodeError:
|
| 70 |
+
logging.warning("Invalid cookie format. Proceeding without cookies.")
|
| 71 |
+
|
| 72 |
+
# Make the request
|
| 73 |
+
response = requests.get(url, headers=headers, stream=True)
|
| 74 |
+
# Raise an exception for bad status codes
|
| 75 |
+
response.raise_for_status()
|
| 76 |
+
|
| 77 |
+
# Get the file size
|
| 78 |
+
file_size = int(response.headers.get('content-length', 0))
|
| 79 |
+
if file_size > 500 * 1024 * 1024: # 500 MB limit
|
| 80 |
+
raise ValueError("File size exceeds the 500MB limit.")
|
| 81 |
+
|
| 82 |
+
# Generate a unique filename
|
| 83 |
+
file_name = f"audio_{uuid.uuid4().hex[:8]}.mp3"
|
| 84 |
+
save_path = os.path.join('downloads', file_name)
|
| 85 |
+
|
| 86 |
+
# Ensure the downloads directory exists
|
| 87 |
+
os.makedirs('downloads', exist_ok=True)
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
# Download the file
|
| 91 |
+
with open(save_path, 'wb') as f:
|
| 92 |
+
for chunk in response.iter_content(chunk_size=8192):
|
| 93 |
+
if chunk:
|
| 94 |
+
f.write(chunk)
|
| 95 |
+
|
| 96 |
+
logging.info(f"Audio file downloaded successfully: {save_path}")
|
| 97 |
+
return save_path
|
| 98 |
+
|
| 99 |
+
except requests.RequestException as e:
|
| 100 |
+
logging.error(f"Error downloading audio file: {str(e)}")
|
| 101 |
+
raise
|
| 102 |
+
except ValueError as e:
|
| 103 |
+
logging.error(str(e))
|
| 104 |
+
raise
|
| 105 |
+
except Exception as e:
|
| 106 |
+
logging.error(f"Unexpected error downloading audio file: {str(e)}")
|
| 107 |
+
raise
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
def process_audio(
|
| 111 |
+
audio_file_path,
|
| 112 |
+
num_speakers=2,
|
| 113 |
+
whisper_model="small.en",
|
| 114 |
+
custom_prompt_input=None,
|
| 115 |
+
offset=0,
|
| 116 |
+
api_name=None,
|
| 117 |
+
api_key=None,
|
| 118 |
+
vad_filter=False,
|
| 119 |
+
rolling_summarization=False,
|
| 120 |
+
detail_level=0.01,
|
| 121 |
+
keywords="default,no_keyword_set",
|
| 122 |
+
chunk_text_by_words=False,
|
| 123 |
+
max_words=0,
|
| 124 |
+
chunk_text_by_sentences=False,
|
| 125 |
+
max_sentences=0,
|
| 126 |
+
chunk_text_by_paragraphs=False,
|
| 127 |
+
max_paragraphs=0,
|
| 128 |
+
chunk_text_by_tokens=False,
|
| 129 |
+
max_tokens=0
|
| 130 |
+
):
|
| 131 |
+
try:
|
| 132 |
+
|
| 133 |
+
# Perform transcription
|
| 134 |
+
audio_file_path, segments = perform_transcription(audio_file_path, offset, whisper_model, vad_filter)
|
| 135 |
+
|
| 136 |
+
if audio_file_path is None or segments is None:
|
| 137 |
+
logging.error("Process_Audio: Transcription failed or segments not available.")
|
| 138 |
+
return "Process_Audio: Transcription failed.", None, None, None, None, None
|
| 139 |
+
|
| 140 |
+
logging.debug(f"Process_Audio: Transcription audio_file: {audio_file_path}")
|
| 141 |
+
logging.debug(f"Process_Audio: Transcription segments: {segments}")
|
| 142 |
+
|
| 143 |
+
transcription_text = {'audio_file': audio_file_path, 'transcription': segments}
|
| 144 |
+
logging.debug(f"Process_Audio: Transcription text: {transcription_text}")
|
| 145 |
+
|
| 146 |
+
# Save segments to JSON
|
| 147 |
+
segments_json_path = save_segments_to_json(segments)
|
| 148 |
+
|
| 149 |
+
# Perform summarization
|
| 150 |
+
summary_text = None
|
| 151 |
+
if api_name:
|
| 152 |
+
if rolling_summarization is not None:
|
| 153 |
+
pass
|
| 154 |
+
# FIXME rolling summarization
|
| 155 |
+
# summary_text = rolling_summarize_function(
|
| 156 |
+
# transcription_text,
|
| 157 |
+
# detail=detail_level,
|
| 158 |
+
# api_name=api_name,
|
| 159 |
+
# api_key=api_key,
|
| 160 |
+
# custom_prompt=custom_prompt_input,
|
| 161 |
+
# chunk_by_words=chunk_text_by_words,
|
| 162 |
+
# max_words=max_words,
|
| 163 |
+
# chunk_by_sentences=chunk_text_by_sentences,
|
| 164 |
+
# max_sentences=max_sentences,
|
| 165 |
+
# chunk_by_paragraphs=chunk_text_by_paragraphs,
|
| 166 |
+
# max_paragraphs=max_paragraphs,
|
| 167 |
+
# chunk_by_tokens=chunk_text_by_tokens,
|
| 168 |
+
# max_tokens=max_tokens
|
| 169 |
+
# )
|
| 170 |
+
else:
|
| 171 |
+
summary_text = perform_summarization(api_name, segments_json_path, custom_prompt_input, api_key)
|
| 172 |
+
|
| 173 |
+
if summary_text is None:
|
| 174 |
+
logging.error("Summary text is None. Check summarization function.")
|
| 175 |
+
summary_file_path = None
|
| 176 |
+
else:
|
| 177 |
+
summary_text = 'Summary not available'
|
| 178 |
+
summary_file_path = None
|
| 179 |
+
|
| 180 |
+
# Save transcription and summary
|
| 181 |
+
download_path = create_download_directory("Audio_Processing")
|
| 182 |
+
json_file_path, summary_file_path = save_transcription_and_summary(transcription_text, summary_text,
|
| 183 |
+
download_path)
|
| 184 |
+
|
| 185 |
+
# Update function call to add_media_to_database so that it properly applies the title, author and file type
|
| 186 |
+
# Add to database
|
| 187 |
+
add_media_to_database(None, {'title': 'Audio File', 'author': 'Unknown'}, segments, summary_text, keywords,
|
| 188 |
+
custom_prompt_input, whisper_model)
|
| 189 |
+
|
| 190 |
+
return transcription_text, summary_text, json_file_path, summary_file_path, None, None
|
| 191 |
+
|
| 192 |
+
except Exception as e:
|
| 193 |
+
logging.error(f"Error in process_audio: {str(e)}")
|
| 194 |
+
return str(e), None, None, None, None, None
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
def process_single_audio(audio_file_path, whisper_model, api_name, api_key, keep_original,custom_keywords, source,
|
| 198 |
+
custom_prompt_input, chunk_method, max_chunk_size, chunk_overlap, use_adaptive_chunking,
|
| 199 |
+
use_multi_level_chunking, chunk_language):
|
| 200 |
+
progress = []
|
| 201 |
+
transcription = ""
|
| 202 |
+
summary = ""
|
| 203 |
+
|
| 204 |
+
def update_progress(message):
|
| 205 |
+
progress.append(message)
|
| 206 |
+
return "\n".join(progress)
|
| 207 |
+
|
| 208 |
+
try:
|
| 209 |
+
# Check file size before processing
|
| 210 |
+
file_size = os.path.getsize(audio_file_path)
|
| 211 |
+
if file_size > MAX_FILE_SIZE:
|
| 212 |
+
update_progress(f"File size ({file_size / (1024 * 1024):.2f} MB) exceeds the maximum limit of {MAX_FILE_SIZE / (1024 * 1024):.2f} MB. Skipping this file.")
|
| 213 |
+
return "\n".join(progress), "", ""
|
| 214 |
+
|
| 215 |
+
# Perform transcription
|
| 216 |
+
update_progress("Starting transcription...")
|
| 217 |
+
segments = speech_to_text(audio_file_path, whisper_model=whisper_model)
|
| 218 |
+
transcription = " ".join([segment['Text'] for segment in segments])
|
| 219 |
+
update_progress("Audio transcribed successfully.")
|
| 220 |
+
|
| 221 |
+
# Perform summarization if API is provided
|
| 222 |
+
if api_name and api_key:
|
| 223 |
+
update_progress("Starting summarization...")
|
| 224 |
+
summary = perform_summarization(api_name, transcription, "Summarize the following audio transcript",
|
| 225 |
+
api_key)
|
| 226 |
+
update_progress("Audio summarized successfully.")
|
| 227 |
+
else:
|
| 228 |
+
summary = "No summary available"
|
| 229 |
+
|
| 230 |
+
# Prepare keywords
|
| 231 |
+
keywords = "audio,transcription"
|
| 232 |
+
if custom_keywords:
|
| 233 |
+
keywords += f",{custom_keywords}"
|
| 234 |
+
|
| 235 |
+
# Add to database
|
| 236 |
+
add_media_with_keywords(
|
| 237 |
+
url=source,
|
| 238 |
+
title=os.path.basename(audio_file_path),
|
| 239 |
+
media_type='audio',
|
| 240 |
+
content=transcription,
|
| 241 |
+
keywords=keywords,
|
| 242 |
+
prompt="Summarize the following audio transcript",
|
| 243 |
+
summary=summary,
|
| 244 |
+
transcription_model=whisper_model,
|
| 245 |
+
author="Unknown",
|
| 246 |
+
ingestion_date=None # This will use the current date
|
| 247 |
+
)
|
| 248 |
+
update_progress("Audio file added to database successfully.")
|
| 249 |
+
|
| 250 |
+
if not keep_original and source != "Uploaded File":
|
| 251 |
+
os.remove(audio_file_path)
|
| 252 |
+
update_progress(f"Temporary file {audio_file_path} removed.")
|
| 253 |
+
elif keep_original and source != "Uploaded File":
|
| 254 |
+
update_progress(f"Original audio file kept at: {audio_file_path}")
|
| 255 |
+
|
| 256 |
+
except Exception as e:
|
| 257 |
+
update_progress(f"Error processing {source}: {str(e)}")
|
| 258 |
+
transcription = f"Error: {str(e)}"
|
| 259 |
+
summary = "No summary due to error"
|
| 260 |
+
|
| 261 |
+
return "\n".join(progress), transcription, summary
|
| 262 |
+
|
| 263 |
+
|
| 264 |
+
def process_audio_files(audio_urls, audio_file, whisper_model, api_name, api_key, use_cookies, cookies, keep_original,
|
| 265 |
+
custom_keywords, custom_prompt_input, chunk_method, max_chunk_size, chunk_overlap,
|
| 266 |
+
use_adaptive_chunking, use_multi_level_chunking, chunk_language, diarize):
|
| 267 |
+
progress = []
|
| 268 |
+
temp_files = []
|
| 269 |
+
all_transcriptions = []
|
| 270 |
+
all_summaries = []
|
| 271 |
+
|
| 272 |
+
def update_progress(message):
|
| 273 |
+
progress.append(message)
|
| 274 |
+
return "\n".join(progress)
|
| 275 |
+
|
| 276 |
+
def cleanup_files():
|
| 277 |
+
for file in temp_files:
|
| 278 |
+
try:
|
| 279 |
+
if os.path.exists(file):
|
| 280 |
+
os.remove(file)
|
| 281 |
+
update_progress(f"Temporary file {file} removed.")
|
| 282 |
+
except Exception as e:
|
| 283 |
+
update_progress(f"Failed to remove temporary file {file}: {str(e)}")
|
| 284 |
+
|
| 285 |
+
def reencode_mp3(mp3_file_path):
|
| 286 |
+
try:
|
| 287 |
+
reencoded_mp3_path = mp3_file_path.replace(".mp3", "_reencoded.mp3")
|
| 288 |
+
subprocess.run([ffmpeg_cmd, '-i', mp3_file_path, '-codec:a', 'libmp3lame', reencoded_mp3_path], check=True)
|
| 289 |
+
update_progress(f"Re-encoded {mp3_file_path} to {reencoded_mp3_path}.")
|
| 290 |
+
return reencoded_mp3_path
|
| 291 |
+
except subprocess.CalledProcessError as e:
|
| 292 |
+
update_progress(f"Error re-encoding {mp3_file_path}: {str(e)}")
|
| 293 |
+
raise
|
| 294 |
+
|
| 295 |
+
def convert_mp3_to_wav(mp3_file_path):
|
| 296 |
+
try:
|
| 297 |
+
wav_file_path = mp3_file_path.replace(".mp3", ".wav")
|
| 298 |
+
subprocess.run([ffmpeg_cmd, '-i', mp3_file_path, wav_file_path], check=True)
|
| 299 |
+
update_progress(f"Converted {mp3_file_path} to {wav_file_path}.")
|
| 300 |
+
return wav_file_path
|
| 301 |
+
except subprocess.CalledProcessError as e:
|
| 302 |
+
update_progress(f"Error converting {mp3_file_path} to WAV: {str(e)}")
|
| 303 |
+
raise
|
| 304 |
+
|
| 305 |
+
try:
|
| 306 |
+
# Check and set the ffmpeg command
|
| 307 |
+
global ffmpeg_cmd
|
| 308 |
+
if os.name == "nt":
|
| 309 |
+
logging.debug("Running on Windows")
|
| 310 |
+
ffmpeg_cmd = os.path.join(os.getcwd(), "Bin", "ffmpeg.exe")
|
| 311 |
+
else:
|
| 312 |
+
ffmpeg_cmd = 'ffmpeg' # Assume 'ffmpeg' is in PATH for non-Windows systems
|
| 313 |
+
|
| 314 |
+
# Ensure ffmpeg is accessible
|
| 315 |
+
if not os.path.exists(ffmpeg_cmd) and os.name == "nt":
|
| 316 |
+
raise FileNotFoundError(f"ffmpeg executable not found at path: {ffmpeg_cmd}")
|
| 317 |
+
|
| 318 |
+
# Define chunk options early to avoid undefined errors
|
| 319 |
+
chunk_options = {
|
| 320 |
+
'method': chunk_method,
|
| 321 |
+
'max_size': max_chunk_size,
|
| 322 |
+
'overlap': chunk_overlap,
|
| 323 |
+
'adaptive': use_adaptive_chunking,
|
| 324 |
+
'multi_level': use_multi_level_chunking,
|
| 325 |
+
'language': chunk_language
|
| 326 |
+
}
|
| 327 |
+
|
| 328 |
+
# Process multiple URLs
|
| 329 |
+
urls = [url.strip() for url in audio_urls.split('\n') if url.strip()]
|
| 330 |
+
|
| 331 |
+
for i, url in enumerate(urls):
|
| 332 |
+
update_progress(f"Processing URL {i + 1}/{len(urls)}: {url}")
|
| 333 |
+
|
| 334 |
+
# Download and process audio file
|
| 335 |
+
audio_file_path = download_audio_file(url, use_cookies, cookies)
|
| 336 |
+
if not os.path.exists(audio_file_path):
|
| 337 |
+
update_progress(f"Downloaded file not found: {audio_file_path}")
|
| 338 |
+
continue
|
| 339 |
+
|
| 340 |
+
temp_files.append(audio_file_path)
|
| 341 |
+
update_progress("Audio file downloaded successfully.")
|
| 342 |
+
|
| 343 |
+
# Re-encode MP3 to fix potential issues
|
| 344 |
+
reencoded_mp3_path = reencode_mp3(audio_file_path)
|
| 345 |
+
if not os.path.exists(reencoded_mp3_path):
|
| 346 |
+
update_progress(f"Re-encoded file not found: {reencoded_mp3_path}")
|
| 347 |
+
continue
|
| 348 |
+
|
| 349 |
+
temp_files.append(reencoded_mp3_path)
|
| 350 |
+
|
| 351 |
+
# Convert re-encoded MP3 to WAV
|
| 352 |
+
wav_file_path = convert_mp3_to_wav(reencoded_mp3_path)
|
| 353 |
+
if not os.path.exists(wav_file_path):
|
| 354 |
+
update_progress(f"Converted WAV file not found: {wav_file_path}")
|
| 355 |
+
continue
|
| 356 |
+
|
| 357 |
+
temp_files.append(wav_file_path)
|
| 358 |
+
|
| 359 |
+
# Initialize transcription
|
| 360 |
+
transcription = ""
|
| 361 |
+
|
| 362 |
+
# Transcribe audio
|
| 363 |
+
if diarize:
|
| 364 |
+
segments = speech_to_text(wav_file_path, whisper_model=whisper_model, diarize=True)
|
| 365 |
+
else:
|
| 366 |
+
segments = speech_to_text(wav_file_path, whisper_model=whisper_model)
|
| 367 |
+
|
| 368 |
+
# Handle segments nested under 'segments' key
|
| 369 |
+
if isinstance(segments, dict) and 'segments' in segments:
|
| 370 |
+
segments = segments['segments']
|
| 371 |
+
|
| 372 |
+
if isinstance(segments, list):
|
| 373 |
+
transcription = " ".join([segment.get('Text', '') for segment in segments])
|
| 374 |
+
update_progress("Audio transcribed successfully.")
|
| 375 |
+
else:
|
| 376 |
+
update_progress("Unexpected segments format received from speech_to_text.")
|
| 377 |
+
logging.error(f"Unexpected segments format: {segments}")
|
| 378 |
+
continue
|
| 379 |
+
|
| 380 |
+
if not transcription.strip():
|
| 381 |
+
update_progress("Transcription is empty.")
|
| 382 |
+
else:
|
| 383 |
+
# Apply chunking
|
| 384 |
+
chunked_text = improved_chunking_process(transcription, chunk_options)
|
| 385 |
+
|
| 386 |
+
# Summarize
|
| 387 |
+
if api_name:
|
| 388 |
+
try:
|
| 389 |
+
summary = perform_summarization(api_name, chunked_text, custom_prompt_input, api_key)
|
| 390 |
+
update_progress("Audio summarized successfully.")
|
| 391 |
+
except Exception as e:
|
| 392 |
+
logging.error(f"Error during summarization: {str(e)}")
|
| 393 |
+
summary = "Summary generation failed"
|
| 394 |
+
else:
|
| 395 |
+
summary = "No summary available (API not provided)"
|
| 396 |
+
|
| 397 |
+
all_transcriptions.append(transcription)
|
| 398 |
+
all_summaries.append(summary)
|
| 399 |
+
|
| 400 |
+
# Add to database
|
| 401 |
+
add_media_with_keywords(
|
| 402 |
+
url=url,
|
| 403 |
+
title=os.path.basename(wav_file_path),
|
| 404 |
+
media_type='audio',
|
| 405 |
+
content=transcription,
|
| 406 |
+
keywords=custom_keywords,
|
| 407 |
+
prompt=custom_prompt_input,
|
| 408 |
+
summary=summary,
|
| 409 |
+
transcription_model=whisper_model,
|
| 410 |
+
author="Unknown",
|
| 411 |
+
ingestion_date=datetime.now().strftime('%Y-%m-%d')
|
| 412 |
+
)
|
| 413 |
+
update_progress("Audio file processed and added to database.")
|
| 414 |
+
|
| 415 |
+
# Process uploaded file if provided
|
| 416 |
+
if audio_file:
|
| 417 |
+
if os.path.getsize(audio_file.name) > MAX_FILE_SIZE:
|
| 418 |
+
update_progress(
|
| 419 |
+
f"Uploaded file size exceeds the maximum limit of {MAX_FILE_SIZE / (1024 * 1024):.2f}MB. Skipping this file.")
|
| 420 |
+
else:
|
| 421 |
+
# Re-encode MP3 to fix potential issues
|
| 422 |
+
reencoded_mp3_path = reencode_mp3(audio_file.name)
|
| 423 |
+
if not os.path.exists(reencoded_mp3_path):
|
| 424 |
+
update_progress(f"Re-encoded file not found: {reencoded_mp3_path}")
|
| 425 |
+
return update_progress("Processing failed: Re-encoded file not found"), "", ""
|
| 426 |
+
|
| 427 |
+
temp_files.append(reencoded_mp3_path)
|
| 428 |
+
|
| 429 |
+
# Convert re-encoded MP3 to WAV
|
| 430 |
+
wav_file_path = convert_mp3_to_wav(reencoded_mp3_path)
|
| 431 |
+
if not os.path.exists(wav_file_path):
|
| 432 |
+
update_progress(f"Converted WAV file not found: {wav_file_path}")
|
| 433 |
+
return update_progress("Processing failed: Converted WAV file not found"), "", ""
|
| 434 |
+
|
| 435 |
+
temp_files.append(wav_file_path)
|
| 436 |
+
|
| 437 |
+
# Initialize transcription
|
| 438 |
+
transcription = ""
|
| 439 |
+
|
| 440 |
+
if diarize:
|
| 441 |
+
segments = speech_to_text(wav_file_path, whisper_model=whisper_model, diarize=True)
|
| 442 |
+
else:
|
| 443 |
+
segments = speech_to_text(wav_file_path, whisper_model=whisper_model)
|
| 444 |
+
|
| 445 |
+
# Handle segments nested under 'segments' key
|
| 446 |
+
if isinstance(segments, dict) and 'segments' in segments:
|
| 447 |
+
segments = segments['segments']
|
| 448 |
+
|
| 449 |
+
if isinstance(segments, list):
|
| 450 |
+
transcription = " ".join([segment.get('Text', '') for segment in segments])
|
| 451 |
+
else:
|
| 452 |
+
update_progress("Unexpected segments format received from speech_to_text.")
|
| 453 |
+
logging.error(f"Unexpected segments format: {segments}")
|
| 454 |
+
|
| 455 |
+
chunked_text = improved_chunking_process(transcription, chunk_options)
|
| 456 |
+
|
| 457 |
+
if api_name and api_key:
|
| 458 |
+
try:
|
| 459 |
+
summary = perform_summarization(api_name, chunked_text, custom_prompt_input, api_key)
|
| 460 |
+
update_progress("Audio summarized successfully.")
|
| 461 |
+
except Exception as e:
|
| 462 |
+
logging.error(f"Error during summarization: {str(e)}")
|
| 463 |
+
summary = "Summary generation failed"
|
| 464 |
+
else:
|
| 465 |
+
summary = "No summary available (API not provided)"
|
| 466 |
+
|
| 467 |
+
all_transcriptions.append(transcription)
|
| 468 |
+
all_summaries.append(summary)
|
| 469 |
+
|
| 470 |
+
add_media_with_keywords(
|
| 471 |
+
url="Uploaded File",
|
| 472 |
+
title=os.path.basename(wav_file_path),
|
| 473 |
+
media_type='audio',
|
| 474 |
+
content=transcription,
|
| 475 |
+
keywords=custom_keywords,
|
| 476 |
+
prompt=custom_prompt_input,
|
| 477 |
+
summary=summary,
|
| 478 |
+
transcription_model=whisper_model,
|
| 479 |
+
author="Unknown",
|
| 480 |
+
ingestion_date=datetime.now().strftime('%Y-%m-%d')
|
| 481 |
+
)
|
| 482 |
+
update_progress("Uploaded file processed and added to database.")
|
| 483 |
+
|
| 484 |
+
# Final cleanup
|
| 485 |
+
if not keep_original:
|
| 486 |
+
cleanup_files()
|
| 487 |
+
|
| 488 |
+
final_progress = update_progress("All processing complete.")
|
| 489 |
+
final_transcriptions = "\n\n".join(all_transcriptions)
|
| 490 |
+
final_summaries = "\n\n".join(all_summaries)
|
| 491 |
+
|
| 492 |
+
return final_progress, final_transcriptions, final_summaries
|
| 493 |
+
|
| 494 |
+
except Exception as e:
|
| 495 |
+
logging.error(f"Error processing audio files: {str(e)}")
|
| 496 |
+
cleanup_files()
|
| 497 |
+
return update_progress(f"Processing failed: {str(e)}"), "", ""
|
| 498 |
+
|
| 499 |
+
|
| 500 |
+
def download_youtube_audio(url):
|
| 501 |
+
try:
|
| 502 |
+
# Determine ffmpeg path based on the operating system.
|
| 503 |
+
ffmpeg_path = './Bin/ffmpeg.exe' if os.name == 'nt' else 'ffmpeg'
|
| 504 |
+
|
| 505 |
+
# Create a temporary directory
|
| 506 |
+
with tempfile.TemporaryDirectory() as temp_dir:
|
| 507 |
+
# Extract information about the video
|
| 508 |
+
with yt_dlp.YoutubeDL({'quiet': True}) as ydl:
|
| 509 |
+
info_dict = ydl.extract_info(url, download=False)
|
| 510 |
+
sanitized_title = sanitize_filename(info_dict['title'])
|
| 511 |
+
|
| 512 |
+
# Setup the temporary filenames
|
| 513 |
+
temp_video_path = Path(temp_dir) / f"{sanitized_title}_temp.mp4"
|
| 514 |
+
temp_audio_path = Path(temp_dir) / f"{sanitized_title}.mp3"
|
| 515 |
+
|
| 516 |
+
# Initialize yt-dlp with options for downloading
|
| 517 |
+
ydl_opts = {
|
| 518 |
+
'format': 'bestaudio[ext=m4a]/best[height<=480]', # Prefer best audio, or video up to 480p
|
| 519 |
+
'ffmpeg_location': ffmpeg_path,
|
| 520 |
+
'outtmpl': str(temp_video_path),
|
| 521 |
+
'noplaylist': True,
|
| 522 |
+
'quiet': True
|
| 523 |
+
}
|
| 524 |
+
|
| 525 |
+
# Execute yt-dlp to download the video/audio
|
| 526 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
| 527 |
+
ydl.download([url])
|
| 528 |
+
|
| 529 |
+
# Check if the file exists
|
| 530 |
+
if not temp_video_path.exists():
|
| 531 |
+
raise FileNotFoundError(f"Expected file was not found: {temp_video_path}")
|
| 532 |
+
|
| 533 |
+
# Use ffmpeg to extract audio
|
| 534 |
+
ffmpeg_command = [
|
| 535 |
+
ffmpeg_path,
|
| 536 |
+
'-i', str(temp_video_path),
|
| 537 |
+
'-vn', # No video
|
| 538 |
+
'-acodec', 'libmp3lame',
|
| 539 |
+
'-b:a', '192k',
|
| 540 |
+
str(temp_audio_path)
|
| 541 |
+
]
|
| 542 |
+
subprocess.run(ffmpeg_command, check=True, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
|
| 543 |
+
|
| 544 |
+
# Check if the audio file was created
|
| 545 |
+
if not temp_audio_path.exists():
|
| 546 |
+
raise FileNotFoundError(f"Expected audio file was not found: {temp_audio_path}")
|
| 547 |
+
|
| 548 |
+
# Create a persistent directory for the download if it doesn't exist
|
| 549 |
+
persistent_dir = Path("downloads")
|
| 550 |
+
persistent_dir.mkdir(exist_ok=True)
|
| 551 |
+
|
| 552 |
+
# Move the file from the temporary directory to the persistent directory
|
| 553 |
+
persistent_file_path = persistent_dir / f"{sanitized_title}.mp3"
|
| 554 |
+
os.replace(str(temp_audio_path), str(persistent_file_path))
|
| 555 |
+
|
| 556 |
+
# Add the file to the list of downloaded files
|
| 557 |
+
downloaded_files.append(str(persistent_file_path))
|
| 558 |
+
|
| 559 |
+
return str(persistent_file_path), f"Audio downloaded successfully: {sanitized_title}.mp3"
|
| 560 |
+
except Exception as e:
|
| 561 |
+
return None, f"Error downloading audio: {str(e)}"
|
| 562 |
+
|
| 563 |
+
|
| 564 |
+
def process_podcast(url, title, author, keywords, custom_prompt, api_name, api_key, whisper_model,
|
| 565 |
+
keep_original=False, enable_diarization=False, use_cookies=False, cookies=None,
|
| 566 |
+
chunk_method=None, max_chunk_size=300, chunk_overlap=0, use_adaptive_chunking=False,
|
| 567 |
+
use_multi_level_chunking=False, chunk_language='english'):
|
| 568 |
+
progress = []
|
| 569 |
+
error_message = ""
|
| 570 |
+
temp_files = []
|
| 571 |
+
|
| 572 |
+
def update_progress(message):
|
| 573 |
+
progress.append(message)
|
| 574 |
+
return "\n".join(progress)
|
| 575 |
+
|
| 576 |
+
def cleanup_files():
|
| 577 |
+
if not keep_original:
|
| 578 |
+
for file in temp_files:
|
| 579 |
+
try:
|
| 580 |
+
if os.path.exists(file):
|
| 581 |
+
os.remove(file)
|
| 582 |
+
update_progress(f"Temporary file {file} removed.")
|
| 583 |
+
except Exception as e:
|
| 584 |
+
update_progress(f"Failed to remove temporary file {file}: {str(e)}")
|
| 585 |
+
|
| 586 |
+
try:
|
| 587 |
+
# Download podcast
|
| 588 |
+
audio_file = download_audio_file(url, use_cookies, cookies)
|
| 589 |
+
temp_files.append(audio_file)
|
| 590 |
+
update_progress("Podcast downloaded successfully.")
|
| 591 |
+
|
| 592 |
+
# Extract metadata
|
| 593 |
+
metadata = extract_metadata(url)
|
| 594 |
+
title = title or metadata.get('title', 'Unknown Podcast')
|
| 595 |
+
author = author or metadata.get('uploader', 'Unknown Author')
|
| 596 |
+
|
| 597 |
+
# Format metadata for storage
|
| 598 |
+
metadata_text = f"""
|
| 599 |
+
Metadata:
|
| 600 |
+
Title: {title}
|
| 601 |
+
Author: {author}
|
| 602 |
+
Series: {metadata.get('series', 'N/A')}
|
| 603 |
+
Episode: {metadata.get('episode', 'N/A')}
|
| 604 |
+
Season: {metadata.get('season', 'N/A')}
|
| 605 |
+
Upload Date: {metadata.get('upload_date', 'N/A')}
|
| 606 |
+
Duration: {metadata.get('duration', 'N/A')} seconds
|
| 607 |
+
Description: {metadata.get('description', 'N/A')}
|
| 608 |
+
"""
|
| 609 |
+
|
| 610 |
+
# Update keywords
|
| 611 |
+
new_keywords = []
|
| 612 |
+
if metadata.get('series'):
|
| 613 |
+
new_keywords.append(f"series:{metadata['series']}")
|
| 614 |
+
if metadata.get('episode'):
|
| 615 |
+
new_keywords.append(f"episode:{metadata['episode']}")
|
| 616 |
+
if metadata.get('season'):
|
| 617 |
+
new_keywords.append(f"season:{metadata['season']}")
|
| 618 |
+
|
| 619 |
+
keywords = f"{keywords},{','.join(new_keywords)}" if keywords else ','.join(new_keywords)
|
| 620 |
+
|
| 621 |
+
update_progress(f"Metadata extracted - Title: {title}, Author: {author}, Keywords: {keywords}")
|
| 622 |
+
|
| 623 |
+
# Transcribe the podcast
|
| 624 |
+
try:
|
| 625 |
+
if enable_diarization:
|
| 626 |
+
segments = speech_to_text(audio_file, whisper_model=whisper_model, diarize=True)
|
| 627 |
+
else:
|
| 628 |
+
segments = speech_to_text(audio_file, whisper_model=whisper_model)
|
| 629 |
+
transcription = " ".join([segment['Text'] for segment in segments])
|
| 630 |
+
update_progress("Podcast transcribed successfully.")
|
| 631 |
+
except Exception as e:
|
| 632 |
+
error_message = f"Transcription failed: {str(e)}"
|
| 633 |
+
raise
|
| 634 |
+
|
| 635 |
+
# Apply chunking
|
| 636 |
+
chunk_options = {
|
| 637 |
+
'method': chunk_method,
|
| 638 |
+
'max_size': max_chunk_size,
|
| 639 |
+
'overlap': chunk_overlap,
|
| 640 |
+
'adaptive': use_adaptive_chunking,
|
| 641 |
+
'multi_level': use_multi_level_chunking,
|
| 642 |
+
'language': chunk_language
|
| 643 |
+
}
|
| 644 |
+
chunked_text = improved_chunking_process(transcription, chunk_options)
|
| 645 |
+
|
| 646 |
+
# Combine metadata and transcription
|
| 647 |
+
full_content = metadata_text + "\n\nTranscription:\n" + transcription
|
| 648 |
+
|
| 649 |
+
# Summarize if API is provided
|
| 650 |
+
summary = None
|
| 651 |
+
if api_name and api_key:
|
| 652 |
+
try:
|
| 653 |
+
summary = perform_summarization(api_name, chunked_text, custom_prompt, api_key)
|
| 654 |
+
update_progress("Podcast summarized successfully.")
|
| 655 |
+
except Exception as e:
|
| 656 |
+
error_message = f"Summarization failed: {str(e)}"
|
| 657 |
+
raise
|
| 658 |
+
|
| 659 |
+
# Add to database
|
| 660 |
+
try:
|
| 661 |
+
add_media_with_keywords(
|
| 662 |
+
url=url,
|
| 663 |
+
title=title,
|
| 664 |
+
media_type='podcast',
|
| 665 |
+
content=full_content,
|
| 666 |
+
keywords=keywords,
|
| 667 |
+
prompt=custom_prompt,
|
| 668 |
+
summary=summary or "No summary available",
|
| 669 |
+
transcription_model=whisper_model,
|
| 670 |
+
author=author,
|
| 671 |
+
ingestion_date=datetime.now().strftime('%Y-%m-%d')
|
| 672 |
+
)
|
| 673 |
+
update_progress("Podcast added to database successfully.")
|
| 674 |
+
except Exception as e:
|
| 675 |
+
error_message = f"Error adding podcast to database: {str(e)}"
|
| 676 |
+
raise
|
| 677 |
+
|
| 678 |
+
# Cleanup
|
| 679 |
+
cleanup_files()
|
| 680 |
+
|
| 681 |
+
return (update_progress("Processing complete."), full_content, summary or "No summary generated.",
|
| 682 |
+
title, author, keywords, error_message)
|
| 683 |
+
|
| 684 |
+
except Exception as e:
|
| 685 |
+
logging.error(f"Error processing podcast: {str(e)}")
|
| 686 |
+
cleanup_files()
|
| 687 |
+
return update_progress(f"Processing failed: {str(e)}"), "", "", "", "", "", str(e)
|
| 688 |
+
|
| 689 |
+
|
| 690 |
+
#
|
| 691 |
+
#
|
| 692 |
#######################################################################################################################
|