Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,1436 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import argparse, configparser, datetime, json, logging, os, platform, requests, shutil, subprocess, sys, time, unicodedata
|
| 4 |
+
import zipfile
|
| 5 |
+
from datetime import datetime
|
| 6 |
+
import contextlib
|
| 7 |
+
import ffmpeg
|
| 8 |
+
import torch
|
| 9 |
+
import yt_dlp
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
#######
|
| 13 |
+
# Function Sections
|
| 14 |
+
#
|
| 15 |
+
# System Checks
|
| 16 |
+
# Processing Paths and local file handling
|
| 17 |
+
# Video Download/Handling
|
| 18 |
+
# Audio Transcription
|
| 19 |
+
# Diarization
|
| 20 |
+
# Summarizers
|
| 21 |
+
# Main
|
| 22 |
+
#
|
| 23 |
+
#######
|
| 24 |
+
|
| 25 |
+
# To Do
|
| 26 |
+
# Offline diarization - https://github.com/pyannote/pyannote-audio/blob/develop/tutorials/community/offline_usage_speaker_diarization.ipynb
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
####
|
| 30 |
+
#
|
| 31 |
+
# TL/DW: Too Long Didn't Watch
|
| 32 |
+
#
|
| 33 |
+
# Project originally created by https://github.com/the-crypt-keeper
|
| 34 |
+
# Modifications made by https://github.com/rmusser01
|
| 35 |
+
# All credit to the original authors, I've just glued shit together.
|
| 36 |
+
#
|
| 37 |
+
#
|
| 38 |
+
# Usage:
|
| 39 |
+
# Transcribe a single URL:
|
| 40 |
+
# python diarize.py https://example.com/video.mp4
|
| 41 |
+
#
|
| 42 |
+
# Transcribe a single URL and have the resulting transcription summarized:
|
| 43 |
+
# python diarize.py https://example.com/video.mp4
|
| 44 |
+
#
|
| 45 |
+
# Transcribe a list of files:
|
| 46 |
+
# python diarize.py ./path/to/your/text_file.txt
|
| 47 |
+
#
|
| 48 |
+
# Transcribe a local file:
|
| 49 |
+
# python diarize.py /path/to/your/localfile.mp4
|
| 50 |
+
#
|
| 51 |
+
# Transcribe a local file and have it summarized:
|
| 52 |
+
# python diarize.py ./input.mp4 --api_name openai --api_key <your_openai_api_key>
|
| 53 |
+
#
|
| 54 |
+
# Transcribe a list of files and have them all summarized:
|
| 55 |
+
# python diarize.py path_to_your_text_file.txt --api_name <openai> --api_key <your_openai_api_key>
|
| 56 |
+
#
|
| 57 |
+
###
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
#######################
|
| 61 |
+
# Config loading
|
| 62 |
+
#
|
| 63 |
+
|
| 64 |
+
# Read configuration from file
|
| 65 |
+
config = configparser.ConfigParser()
|
| 66 |
+
config.read('config.txt')
|
| 67 |
+
|
| 68 |
+
# API Keys
|
| 69 |
+
anthropic_api_key = config.get('API', 'anthropic_api_key', fallback=None)
|
| 70 |
+
cohere_api_key = config.get('API', 'cohere_api_key', fallback=None)
|
| 71 |
+
groq_api_key = config.get('API', 'groq_api_key', fallback=None)
|
| 72 |
+
openai_api_key = config.get('API', 'openai_api_key', fallback=None)
|
| 73 |
+
huggingface_api_key = config.get('API', 'huggingface_api_key', fallback=None)
|
| 74 |
+
|
| 75 |
+
# Models
|
| 76 |
+
anthropic_model = config.get('API', 'anthropic_model', fallback='claude-3-sonnet-20240229')
|
| 77 |
+
cohere_model = config.get('API', 'cohere_model', fallback='command-r-plus')
|
| 78 |
+
groq_model = config.get('API', 'groq_model', fallback='FIXME')
|
| 79 |
+
openai_model = config.get('API', 'openai_model', fallback='gpt-4-turbo')
|
| 80 |
+
huggingface_model = config.get('API', 'huggingface_model', fallback='microsoft/Phi-3-mini-128k-instruct')
|
| 81 |
+
|
| 82 |
+
# Local-Models
|
| 83 |
+
kobold_api_IP = config.get('Local-API', 'kobold_api_IP', fallback='http://127.0.0.1:5000/api/v1/generate')
|
| 84 |
+
kobold_api_key = config.get('Local-API', 'kobold_api_key', fallback='')
|
| 85 |
+
llama_api_IP = config.get('Local-API', 'llama_api_IP', fallback='http://127.0.0.1:8080/v1/chat/completions')
|
| 86 |
+
llama_api_key = config.get('Local-API', 'llama_api_key', fallback='')
|
| 87 |
+
ooba_api_IP = config.get('Local-API', 'ooba_api_IP', fallback='http://127.0.0.1:5000/v1/chat/completions')
|
| 88 |
+
ooba_api_key = config.get('Local-API', 'ooba_api_key', fallback='')
|
| 89 |
+
|
| 90 |
+
# Retrieve output paths from the configuration file
|
| 91 |
+
output_path = config.get('Paths', 'output_path', fallback='results')
|
| 92 |
+
|
| 93 |
+
# Retrieve processing choice from the configuration file
|
| 94 |
+
processing_choice = config.get('Processing', 'processing_choice', fallback='cpu')
|
| 95 |
+
|
| 96 |
+
# Log file
|
| 97 |
+
#logging.basicConfig(filename='debug-runtime.log', encoding='utf-8', level=logging.DEBUG)
|
| 98 |
+
|
| 99 |
+
#
|
| 100 |
+
#
|
| 101 |
+
#######################
|
| 102 |
+
|
| 103 |
+
# Dirty hack - sue me.
|
| 104 |
+
os.environ['KMP_DUPLICATE_LIB_OK']='True'
|
| 105 |
+
|
| 106 |
+
whisper_models = ["small", "medium", "small.en","medium.en"]
|
| 107 |
+
source_languages = {
|
| 108 |
+
"en": "English",
|
| 109 |
+
"zh": "Chinese",
|
| 110 |
+
"de": "German",
|
| 111 |
+
"es": "Spanish",
|
| 112 |
+
"ru": "Russian",
|
| 113 |
+
"ko": "Korean",
|
| 114 |
+
"fr": "French"
|
| 115 |
+
}
|
| 116 |
+
source_language_list = [key[0] for key in source_languages.items()]
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
print(r"""_____ _ ________ _ _
|
| 122 |
+
|_ _|| | / /| _ \| | | | _
|
| 123 |
+
| | | | / / | | | || | | |(_)
|
| 124 |
+
| | | | / / | | | || |/\| |
|
| 125 |
+
| | | |____ / / | |/ / \ /\ / _
|
| 126 |
+
\_/ \_____//_/ |___/ \/ \/ (_)
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
_ _
|
| 130 |
+
| | | |
|
| 131 |
+
| |_ ___ ___ | | ___ _ __ __ _
|
| 132 |
+
| __| / _ \ / _ \ | | / _ \ | '_ \ / _` |
|
| 133 |
+
| |_ | (_) || (_) | | || (_) || | | || (_| | _
|
| 134 |
+
\__| \___/ \___/ |_| \___/ |_| |_| \__, |( )
|
| 135 |
+
__/ ||/
|
| 136 |
+
|___/
|
| 137 |
+
_ _ _ _ _ _ _
|
| 138 |
+
| |(_) | | ( )| | | | | |
|
| 139 |
+
__| | _ __| | _ __ |/ | |_ __ __ __ _ | |_ ___ | |__
|
| 140 |
+
/ _` || | / _` || '_ \ | __| \ \ /\ / / / _` || __| / __|| '_ \
|
| 141 |
+
| (_| || || (_| || | | | | |_ \ V V / | (_| || |_ | (__ | | | |
|
| 142 |
+
\__,_||_| \__,_||_| |_| \__| \_/\_/ \__,_| \__| \___||_| |_|
|
| 143 |
+
""")
|
| 144 |
+
|
| 145 |
+
####################################################################################################################################
|
| 146 |
+
# System Checks
|
| 147 |
+
#
|
| 148 |
+
#
|
| 149 |
+
|
| 150 |
+
# Perform Platform Check
|
| 151 |
+
userOS = ""
|
| 152 |
+
def platform_check():
|
| 153 |
+
global userOS
|
| 154 |
+
if platform.system() == "Linux":
|
| 155 |
+
print("Linux OS detected \n Running Linux appropriate commands")
|
| 156 |
+
userOS = "Linux"
|
| 157 |
+
elif platform.system() == "Windows":
|
| 158 |
+
print("Windows OS detected \n Running Windows appropriate commands")
|
| 159 |
+
userOS = "Windows"
|
| 160 |
+
else:
|
| 161 |
+
print("Other OS detected \n Maybe try running things manually?")
|
| 162 |
+
exit()
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
# Check for NVIDIA GPU and CUDA availability
|
| 167 |
+
def cuda_check():
|
| 168 |
+
global processing_choice
|
| 169 |
+
try:
|
| 170 |
+
nvidia_smi = subprocess.check_output("nvidia-smi", shell=True).decode()
|
| 171 |
+
if "NVIDIA-SMI" in nvidia_smi:
|
| 172 |
+
print("NVIDIA GPU with CUDA is available.")
|
| 173 |
+
processing_choice = "cuda" # Set processing_choice to gpu if NVIDIA GPU with CUDA is available
|
| 174 |
+
else:
|
| 175 |
+
print("NVIDIA GPU with CUDA is not available.\nYou either have an AMD GPU, or you're stuck with CPU only.")
|
| 176 |
+
processing_choice = "cpu" # Set processing_choice to cpu if NVIDIA GPU with CUDA is not available
|
| 177 |
+
except subprocess.CalledProcessError:
|
| 178 |
+
print("NVIDIA GPU with CUDA is not available.\nYou either have an AMD GPU, or you're stuck with CPU only.")
|
| 179 |
+
processing_choice = "cpu" # Set processing_choice to cpu if nvidia-smi command fails
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
# Ask user if they would like to use either their GPU or their CPU for transcription
|
| 184 |
+
def decide_cpugpu():
|
| 185 |
+
global processing_choice
|
| 186 |
+
processing_input = input("Would you like to use your GPU or CPU for transcription? (1/cuda)GPU/(2/cpu)CPU): ")
|
| 187 |
+
if processing_choice == "cuda" and (processing_input.lower() == "cuda" or processing_input == "1"):
|
| 188 |
+
print("You've chosen to use the GPU.")
|
| 189 |
+
logging.debug("GPU is being used for processing")
|
| 190 |
+
processing_choice = "cuda"
|
| 191 |
+
elif processing_input.lower() == "cpu" or processing_input == "2":
|
| 192 |
+
print("You've chosen to use the CPU.")
|
| 193 |
+
logging.debug("CPU is being used for processing")
|
| 194 |
+
processing_choice = "cpu"
|
| 195 |
+
else:
|
| 196 |
+
print("Invalid choice. Please select either GPU or CPU.")
|
| 197 |
+
|
| 198 |
+
|
| 199 |
+
|
| 200 |
+
# check for existence of ffmpeg
|
| 201 |
+
def check_ffmpeg():
|
| 202 |
+
if shutil.which("ffmpeg") or (os.path.exists("Bin") and os.path.isfile(".\\Bin\\ffmpeg.exe")):
|
| 203 |
+
logging.debug("ffmpeg found installed on the local system, in the local PATH, or in the './Bin' folder")
|
| 204 |
+
pass
|
| 205 |
+
else:
|
| 206 |
+
logging.debug("ffmpeg not installed on the local system/in local PATH")
|
| 207 |
+
print("ffmpeg is not installed.\n\n You can either install it manually, or through your package manager of choice.\n Windows users, builds are here: https://www.gyan.dev/ffmpeg/builds/")
|
| 208 |
+
if userOS == "Windows":
|
| 209 |
+
download_ffmpeg()
|
| 210 |
+
elif userOS == "Linux":
|
| 211 |
+
print("You should install ffmpeg using your platform's appropriate package manager, 'apt install ffmpeg','dnf install ffmpeg' or 'pacman', etc.")
|
| 212 |
+
else:
|
| 213 |
+
logging.debug("running an unsupported OS")
|
| 214 |
+
print("You're running an unspported/Un-tested OS")
|
| 215 |
+
exit_script = input("Let's exit the script, unless you're feeling lucky? (y/n)")
|
| 216 |
+
if exit_script == "y" or "yes" or "1":
|
| 217 |
+
exit()
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
# Download ffmpeg
|
| 222 |
+
def download_ffmpeg():
|
| 223 |
+
user_choice = input("Do you want to download ffmpeg? (y)Yes/(n)No: ")
|
| 224 |
+
if user_choice.lower() == 'yes' or 'y' or '1':
|
| 225 |
+
print("Downloading ffmpeg")
|
| 226 |
+
url = "https://www.gyan.dev/ffmpeg/builds/ffmpeg-release-essentials.zip"
|
| 227 |
+
response = requests.get(url)
|
| 228 |
+
|
| 229 |
+
if response.status_code == 200:
|
| 230 |
+
print("Saving ffmpeg zip file")
|
| 231 |
+
logging.debug("Saving ffmpeg zip file")
|
| 232 |
+
zip_path = "ffmpeg-release-essentials.zip"
|
| 233 |
+
with open(zip_path, 'wb') as file:
|
| 234 |
+
file.write(response.content)
|
| 235 |
+
|
| 236 |
+
logging.debug("Extracting the 'ffmpeg.exe' file from the zip")
|
| 237 |
+
print("Extracting ffmpeg.exe from zip file to '/Bin' folder")
|
| 238 |
+
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
|
| 239 |
+
ffmpeg_path = "ffmpeg-7.0-essentials_build/bin/ffmpeg.exe"
|
| 240 |
+
|
| 241 |
+
logging.debug("checking if the './Bin' folder exists, creating if not")
|
| 242 |
+
bin_folder = "Bin"
|
| 243 |
+
if not os.path.exists(bin_folder):
|
| 244 |
+
logging.debug("Creating a folder for './Bin', it didn't previously exist")
|
| 245 |
+
os.makedirs(bin_folder)
|
| 246 |
+
|
| 247 |
+
logging.debug("Extracting 'ffmpeg.exe' to the './Bin' folder")
|
| 248 |
+
zip_ref.extract(ffmpeg_path, path=bin_folder)
|
| 249 |
+
|
| 250 |
+
logging.debug("Moving 'ffmpeg.exe' to the './Bin' folder")
|
| 251 |
+
src_path = os.path.join(bin_folder, ffmpeg_path)
|
| 252 |
+
dst_path = os.path.join(bin_folder, "ffmpeg.exe")
|
| 253 |
+
shutil.move(src_path, dst_path)
|
| 254 |
+
|
| 255 |
+
logging.debug("Removing ffmpeg zip file")
|
| 256 |
+
print("Deleting zip file (we've already extracted ffmpeg.exe, no worries)")
|
| 257 |
+
os.remove(zip_path)
|
| 258 |
+
|
| 259 |
+
logging.debug("ffmpeg.exe has been downloaded and extracted to the './Bin' folder.")
|
| 260 |
+
print("ffmpeg.exe has been successfully downloaded and extracted to the './Bin' folder.")
|
| 261 |
+
else:
|
| 262 |
+
logging.error("Failed to download the zip file.")
|
| 263 |
+
print("Failed to download the zip file.")
|
| 264 |
+
else:
|
| 265 |
+
logging.debug("User chose to not download ffmpeg")
|
| 266 |
+
print("ffmpeg will not be downloaded.")
|
| 267 |
+
|
| 268 |
+
#
|
| 269 |
+
#
|
| 270 |
+
####################################################################################################################################
|
| 271 |
+
|
| 272 |
+
|
| 273 |
+
|
| 274 |
+
|
| 275 |
+
|
| 276 |
+
|
| 277 |
+
|
| 278 |
+
####################################################################################################################################
|
| 279 |
+
# Processing Paths and local file handling
|
| 280 |
+
#
|
| 281 |
+
#
|
| 282 |
+
|
| 283 |
+
def read_paths_from_file(file_path):
|
| 284 |
+
""" Reads a file containing URLs or local file paths and returns them as a list. """
|
| 285 |
+
paths = [] # Initialize paths as an empty list
|
| 286 |
+
with open(file_path, 'r') as file:
|
| 287 |
+
for line in file:
|
| 288 |
+
line = line.strip()
|
| 289 |
+
if line and not os.path.exists(os.path.join('results', normalize_title(line.split('/')[-1].split('.')[0]) + '.json')):
|
| 290 |
+
logging.debug("line successfully imported from file and added to list to be transcribed")
|
| 291 |
+
paths.append(line)
|
| 292 |
+
return paths
|
| 293 |
+
|
| 294 |
+
|
| 295 |
+
|
| 296 |
+
def process_path(path):
|
| 297 |
+
""" Decides whether the path is a URL or a local file and processes accordingly. """
|
| 298 |
+
if path.startswith('http'):
|
| 299 |
+
logging.debug("file is a URL")
|
| 300 |
+
return get_youtube(path) # For YouTube URLs, modify to download and extract info
|
| 301 |
+
elif os.path.exists(path):
|
| 302 |
+
logging.debug("File is a path")
|
| 303 |
+
return process_local_file(path) # For local files, define a function to handle them
|
| 304 |
+
else:
|
| 305 |
+
logging.error(f"Path does not exist: {path}")
|
| 306 |
+
return None
|
| 307 |
+
|
| 308 |
+
|
| 309 |
+
|
| 310 |
+
# FIXME
|
| 311 |
+
def process_local_file(file_path):
|
| 312 |
+
logging.info(f"Processing local file: {file_path}")
|
| 313 |
+
title = normalize_title(os.path.splitext(os.path.basename(file_path))[0])
|
| 314 |
+
info_dict = {'title': title}
|
| 315 |
+
logging.debug(f"Creating {title} directory...")
|
| 316 |
+
download_path = create_download_directory(title)
|
| 317 |
+
logging.debug(f"Converting '{title}' to an audio file (wav).")
|
| 318 |
+
audio_file = convert_to_wav(file_path) # Assumes input files are videos needing audio extraction
|
| 319 |
+
logging.debug(f"'{title}' succesfully converted to an audio file (wav).")
|
| 320 |
+
return download_path, info_dict, audio_file
|
| 321 |
+
#
|
| 322 |
+
#
|
| 323 |
+
####################################################################################################################################
|
| 324 |
+
|
| 325 |
+
|
| 326 |
+
|
| 327 |
+
|
| 328 |
+
|
| 329 |
+
|
| 330 |
+
####################################################################################################################################
|
| 331 |
+
# Video Download/Handling
|
| 332 |
+
#
|
| 333 |
+
|
| 334 |
+
def process_url(input_path, num_speakers=2, whisper_model="small.en", offset=0, api_name=None, api_key=None, vad_filter=False, download_video_flag=False, demo_mode=False):
|
| 335 |
+
if demo_mode:
|
| 336 |
+
api_name = "huggingface"
|
| 337 |
+
api_key = os.environ.get("HF_TOKEN")
|
| 338 |
+
vad_filter = False
|
| 339 |
+
download_video_flag = False
|
| 340 |
+
|
| 341 |
+
try:
|
| 342 |
+
results = main(input_path, api_name=api_name, api_key=api_key, num_speakers=num_speakers, whisper_model=whisper_model, offset=offset, vad_filter=vad_filter, download_video_flag=download_video_flag)
|
| 343 |
+
|
| 344 |
+
if results:
|
| 345 |
+
transcription_result = results[0]
|
| 346 |
+
json_file_path = transcription_result['audio_file'].replace('.wav', '.segments.json')
|
| 347 |
+
with open(json_file_path, 'r') as file:
|
| 348 |
+
json_data = json.load(file)
|
| 349 |
+
|
| 350 |
+
summary_file_path = json_file_path.replace('.segments.json', '_summary.txt')
|
| 351 |
+
if os.path.exists(summary_file_path):
|
| 352 |
+
return json_data, summary_file_path, json_file_path, summary_file_path
|
| 353 |
+
else:
|
| 354 |
+
return json_data, "Summary not available.", json_file_path, None
|
| 355 |
+
else:
|
| 356 |
+
return None, "No results found.", None, None
|
| 357 |
+
except Exception as e:
|
| 358 |
+
error_message = f"An error occurred: {str(e)}"
|
| 359 |
+
return None, error_message, None, None
|
| 360 |
+
|
| 361 |
+
|
| 362 |
+
|
| 363 |
+
def create_download_directory(title):
|
| 364 |
+
base_dir = "Results"
|
| 365 |
+
# Remove characters that are illegal in Windows filenames and normalize
|
| 366 |
+
safe_title = normalize_title(title)
|
| 367 |
+
logging.debug(f"{title} successfully normalized")
|
| 368 |
+
session_path = os.path.join(base_dir, safe_title)
|
| 369 |
+
if not os.path.exists(session_path):
|
| 370 |
+
os.makedirs(session_path, exist_ok=True)
|
| 371 |
+
logging.debug(f"Created directory for downloaded video: {session_path}")
|
| 372 |
+
else:
|
| 373 |
+
logging.debug(f"Directory already exists for downloaded video: {session_path}")
|
| 374 |
+
return session_path
|
| 375 |
+
|
| 376 |
+
|
| 377 |
+
|
| 378 |
+
def normalize_title(title):
|
| 379 |
+
# Normalize the string to 'NFKD' form and encode to 'ascii' ignoring non-ascii characters
|
| 380 |
+
title = unicodedata.normalize('NFKD', title).encode('ascii', 'ignore').decode('ascii')
|
| 381 |
+
title = title.replace('/', '_').replace('\\', '_').replace(':', '_').replace('"', '').replace('*', '').replace('?', '').replace('<', '').replace('>', '').replace('|', '')
|
| 382 |
+
return title
|
| 383 |
+
|
| 384 |
+
|
| 385 |
+
|
| 386 |
+
def get_youtube(video_url):
|
| 387 |
+
ydl_opts = {
|
| 388 |
+
'format': 'bestaudio[ext=m4a]',
|
| 389 |
+
'noplaylist': False,
|
| 390 |
+
'quiet': True,
|
| 391 |
+
'extract_flat': True
|
| 392 |
+
}
|
| 393 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
| 394 |
+
logging.debug("About to extract youtube info")
|
| 395 |
+
info_dict = ydl.extract_info(video_url, download=False)
|
| 396 |
+
logging.debug("Youtube info successfully extracted")
|
| 397 |
+
return info_dict
|
| 398 |
+
|
| 399 |
+
|
| 400 |
+
|
| 401 |
+
def get_playlist_videos(playlist_url):
|
| 402 |
+
ydl_opts = {
|
| 403 |
+
'extract_flat': True,
|
| 404 |
+
'skip_download': True,
|
| 405 |
+
'quiet': True
|
| 406 |
+
}
|
| 407 |
+
|
| 408 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
| 409 |
+
info = ydl.extract_info(playlist_url, download=False)
|
| 410 |
+
|
| 411 |
+
if 'entries' in info:
|
| 412 |
+
video_urls = [entry['url'] for entry in info['entries']]
|
| 413 |
+
playlist_title = info['title']
|
| 414 |
+
return video_urls, playlist_title
|
| 415 |
+
else:
|
| 416 |
+
print("No videos found in the playlist.")
|
| 417 |
+
return [], None
|
| 418 |
+
|
| 419 |
+
|
| 420 |
+
|
| 421 |
+
def save_to_file(video_urls, filename):
|
| 422 |
+
with open(filename, 'w') as file:
|
| 423 |
+
file.write('\n'.join(video_urls))
|
| 424 |
+
print(f"Video URLs saved to {filename}")
|
| 425 |
+
|
| 426 |
+
|
| 427 |
+
|
| 428 |
+
def download_video(video_url, download_path, info_dict, download_video_flag):
|
| 429 |
+
logging.debug("About to normalize downloaded video title")
|
| 430 |
+
title = normalize_title(info_dict['title'])
|
| 431 |
+
|
| 432 |
+
if download_video_flag == False:
|
| 433 |
+
file_path = os.path.join(download_path, f"{title}.m4a")
|
| 434 |
+
ydl_opts = {
|
| 435 |
+
'format': 'bestaudio[ext=m4a]',
|
| 436 |
+
'outtmpl': file_path,
|
| 437 |
+
}
|
| 438 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
| 439 |
+
logging.debug("yt_dlp: About to download audio with youtube-dl")
|
| 440 |
+
ydl.download([video_url])
|
| 441 |
+
logging.debug("yt_dlp: Audio successfully downloaded with youtube-dl")
|
| 442 |
+
return file_path
|
| 443 |
+
else:
|
| 444 |
+
video_file_path = os.path.join(download_path, f"{title}_video.mp4")
|
| 445 |
+
audio_file_path = os.path.join(download_path, f"{title}_audio.m4a")
|
| 446 |
+
ydl_opts_video = {
|
| 447 |
+
'format': 'bestvideo[ext=mp4]',
|
| 448 |
+
'outtmpl': video_file_path,
|
| 449 |
+
}
|
| 450 |
+
ydl_opts_audio = {
|
| 451 |
+
'format': 'bestaudio[ext=m4a]',
|
| 452 |
+
'outtmpl': audio_file_path,
|
| 453 |
+
}
|
| 454 |
+
|
| 455 |
+
with yt_dlp.YoutubeDL(ydl_opts_video) as ydl:
|
| 456 |
+
logging.debug("yt_dlp: About to download video with youtube-dl")
|
| 457 |
+
ydl.download([video_url])
|
| 458 |
+
logging.debug("yt_dlp: Video successfully downloaded with youtube-dl")
|
| 459 |
+
|
| 460 |
+
with yt_dlp.YoutubeDL(ydl_opts_audio) as ydl:
|
| 461 |
+
logging.debug("yt_dlp: About to download audio with youtube-dl")
|
| 462 |
+
ydl.download([video_url])
|
| 463 |
+
logging.debug("yt_dlp: Audio successfully downloaded with youtube-dl")
|
| 464 |
+
|
| 465 |
+
output_file_path = os.path.join(download_path, f"{title}.mp4")
|
| 466 |
+
|
| 467 |
+
if userOS == "Windows":
|
| 468 |
+
logging.debug("Running ffmpeg on Windows...")
|
| 469 |
+
ffmpeg_command = [
|
| 470 |
+
'.\\Bin\\ffmpeg.exe',
|
| 471 |
+
'-i', video_file_path,
|
| 472 |
+
'-i', audio_file_path,
|
| 473 |
+
'-c:v', 'copy',
|
| 474 |
+
'-c:a', 'copy',
|
| 475 |
+
output_file_path
|
| 476 |
+
]
|
| 477 |
+
subprocess.run(ffmpeg_command, check=True)
|
| 478 |
+
elif userOS == "Linux":
|
| 479 |
+
logging.debug("Running ffmpeg on Linux...")
|
| 480 |
+
ffmpeg_command = [
|
| 481 |
+
'ffmpeg',
|
| 482 |
+
'-i', video_file_path,
|
| 483 |
+
'-i', audio_file_path,
|
| 484 |
+
'-c:v', 'copy',
|
| 485 |
+
'-c:a', 'copy',
|
| 486 |
+
output_file_path
|
| 487 |
+
]
|
| 488 |
+
subprocess.run(ffmpeg_command, check=True)
|
| 489 |
+
else:
|
| 490 |
+
logging.error("You shouldn't be here...")
|
| 491 |
+
exit()
|
| 492 |
+
os.remove(video_file_path)
|
| 493 |
+
os.remove(audio_file_path)
|
| 494 |
+
|
| 495 |
+
return output_file_path
|
| 496 |
+
|
| 497 |
+
|
| 498 |
+
|
| 499 |
+
|
| 500 |
+
|
| 501 |
+
#
|
| 502 |
+
#
|
| 503 |
+
####################################################################################################################################
|
| 504 |
+
|
| 505 |
+
|
| 506 |
+
|
| 507 |
+
|
| 508 |
+
|
| 509 |
+
|
| 510 |
+
####################################################################################################################################
|
| 511 |
+
# Audio Transcription
|
| 512 |
+
#
|
| 513 |
+
# Convert video .m4a into .wav using ffmpeg
|
| 514 |
+
# ffmpeg -i "example.mp4" -ar 16000 -ac 1 -c:a pcm_s16le "output.wav"
|
| 515 |
+
# https://www.gyan.dev/ffmpeg/builds/
|
| 516 |
+
#
|
| 517 |
+
|
| 518 |
+
#os.system(r'.\Bin\ffmpeg.exe -ss 00:00:00 -i "{video_file_path}" -ar 16000 -ac 1 -c:a pcm_s16le "{out_path}"')
|
| 519 |
+
def convert_to_wav(video_file_path, offset=0):
|
| 520 |
+
print("Starting conversion process of .m4a to .WAV")
|
| 521 |
+
out_path = os.path.splitext(video_file_path)[0] + ".wav"
|
| 522 |
+
|
| 523 |
+
try:
|
| 524 |
+
if os.name == "nt":
|
| 525 |
+
logging.debug("ffmpeg being ran on windows")
|
| 526 |
+
|
| 527 |
+
if sys.platform.startswith('win'):
|
| 528 |
+
ffmpeg_cmd = ".\\Bin\\ffmpeg.exe"
|
| 529 |
+
else:
|
| 530 |
+
ffmpeg_cmd = 'ffmpeg' # Assume 'ffmpeg' is in PATH for non-Windows systems
|
| 531 |
+
|
| 532 |
+
command = [
|
| 533 |
+
ffmpeg_cmd, # Assuming the working directory is correctly set where .\Bin exists
|
| 534 |
+
"-ss", "00:00:00", # Start at the beginning of the video
|
| 535 |
+
"-i", video_file_path,
|
| 536 |
+
"-ar", "16000", # Audio sample rate
|
| 537 |
+
"-ac", "1", # Number of audio channels
|
| 538 |
+
"-c:a", "pcm_s16le", # Audio codec
|
| 539 |
+
out_path
|
| 540 |
+
]
|
| 541 |
+
try:
|
| 542 |
+
# Redirect stdin from null device to prevent ffmpeg from waiting for input
|
| 543 |
+
with open(os.devnull, 'rb') as null_file:
|
| 544 |
+
result = subprocess.run(command, stdin=null_file, text=True, capture_output=True)
|
| 545 |
+
if result.returncode == 0:
|
| 546 |
+
logging.info("FFmpeg executed successfully")
|
| 547 |
+
logging.debug("FFmpeg output: %s", result.stdout)
|
| 548 |
+
else:
|
| 549 |
+
logging.error("Error in running FFmpeg")
|
| 550 |
+
logging.error("FFmpeg stderr: %s", result.stderr)
|
| 551 |
+
raise RuntimeError(f"FFmpeg error: {result.stderr}")
|
| 552 |
+
except Exception as e:
|
| 553 |
+
logging.error("Error occurred - ffmpeg doesn't like windows")
|
| 554 |
+
raise RuntimeError("ffmpeg failed")
|
| 555 |
+
exit()
|
| 556 |
+
elif os.name == "posix":
|
| 557 |
+
os.system(f'ffmpeg -ss 00:00:00 -i "{video_file_path}" -ar 16000 -ac 1 -c:a pcm_s16le "{out_path}"')
|
| 558 |
+
else:
|
| 559 |
+
raise RuntimeError("Unsupported operating system")
|
| 560 |
+
logging.info("Conversion to WAV completed: %s", out_path)
|
| 561 |
+
except subprocess.CalledProcessError as e:
|
| 562 |
+
logging.error("Error executing FFmpeg command: %s", str(e))
|
| 563 |
+
raise RuntimeError("Error converting video file to WAV")
|
| 564 |
+
except Exception as e:
|
| 565 |
+
logging.error("Unexpected error occurred: %s", str(e))
|
| 566 |
+
raise RuntimeError("Error converting video file to WAV")
|
| 567 |
+
return out_path
|
| 568 |
+
|
| 569 |
+
|
| 570 |
+
|
| 571 |
+
# Transcribe .wav into .segments.json
|
| 572 |
+
def speech_to_text(audio_file_path, selected_source_lang='en', whisper_model='small.en', vad_filter=False):
|
| 573 |
+
logging.info('Loading faster_whisper model: %s', whisper_model)
|
| 574 |
+
from faster_whisper import WhisperModel
|
| 575 |
+
model = WhisperModel(whisper_model, device=f"{processing_choice}")
|
| 576 |
+
time_start = time.time()
|
| 577 |
+
if audio_file_path is None:
|
| 578 |
+
raise ValueError("No audio file provided")
|
| 579 |
+
logging.info("Audio file path: %s", audio_file_path)
|
| 580 |
+
|
| 581 |
+
try:
|
| 582 |
+
_, file_ending = os.path.splitext(audio_file_path)
|
| 583 |
+
out_file = audio_file_path.replace(file_ending, ".segments.json")
|
| 584 |
+
if os.path.exists(out_file):
|
| 585 |
+
logging.info("Segments file already exists: %s", out_file)
|
| 586 |
+
with open(out_file) as f:
|
| 587 |
+
segments = json.load(f)
|
| 588 |
+
return segments
|
| 589 |
+
|
| 590 |
+
logging.info('Starting transcription...')
|
| 591 |
+
options = dict(language=selected_source_lang, beam_size=5, best_of=5, vad_filter=vad_filter)
|
| 592 |
+
transcribe_options = dict(task="transcribe", **options)
|
| 593 |
+
segments_raw, info = model.transcribe(audio_file_path, **transcribe_options)
|
| 594 |
+
|
| 595 |
+
segments = []
|
| 596 |
+
for segment_chunk in segments_raw:
|
| 597 |
+
chunk = {
|
| 598 |
+
"start": segment_chunk.start,
|
| 599 |
+
"end": segment_chunk.end,
|
| 600 |
+
"text": segment_chunk.text
|
| 601 |
+
}
|
| 602 |
+
logging.debug("Segment: %s", chunk)
|
| 603 |
+
segments.append(chunk)
|
| 604 |
+
logging.info("Transcription completed with faster_whisper")
|
| 605 |
+
with open(out_file, 'w') as f:
|
| 606 |
+
json.dump(segments, f, indent=2)
|
| 607 |
+
except Exception as e:
|
| 608 |
+
logging.error("Error transcribing audio: %s", str(e))
|
| 609 |
+
raise RuntimeError("Error transcribing audio")
|
| 610 |
+
return segments
|
| 611 |
+
#
|
| 612 |
+
#
|
| 613 |
+
####################################################################################################################################
|
| 614 |
+
|
| 615 |
+
|
| 616 |
+
|
| 617 |
+
|
| 618 |
+
|
| 619 |
+
|
| 620 |
+
####################################################################################################################################
|
| 621 |
+
# Diarization
|
| 622 |
+
#
|
| 623 |
+
# TODO: https://huggingface.co/pyannote/speaker-diarization-3.1
|
| 624 |
+
# embedding_model = "pyannote/embedding", embedding_size=512
|
| 625 |
+
# embedding_model = "speechbrain/spkrec-ecapa-voxceleb", embedding_size=192
|
| 626 |
+
def speaker_diarize(video_file_path, segments, embedding_model = "pyannote/embedding", embedding_size=512, num_speakers=0):
|
| 627 |
+
"""
|
| 628 |
+
1. Generating speaker embeddings for each segments.
|
| 629 |
+
2. Applying agglomerative clustering on the embeddings to identify the speaker for each segment.
|
| 630 |
+
"""
|
| 631 |
+
try:
|
| 632 |
+
from pyannote.audio import Audio
|
| 633 |
+
from pyannote.core import Segment
|
| 634 |
+
from pyannote.audio.pipelines.speaker_verification import PretrainedSpeakerEmbedding
|
| 635 |
+
import numpy as np
|
| 636 |
+
import pandas as pd
|
| 637 |
+
from sklearn.cluster import AgglomerativeClustering
|
| 638 |
+
from sklearn.metrics import silhouette_score
|
| 639 |
+
import tqdm
|
| 640 |
+
import wave
|
| 641 |
+
|
| 642 |
+
embedding_model = PretrainedSpeakerEmbedding( embedding_model, device=torch.device("cuda" if torch.cuda.is_available() else "cpu"))
|
| 643 |
+
|
| 644 |
+
|
| 645 |
+
_,file_ending = os.path.splitext(f'{video_file_path}')
|
| 646 |
+
audio_file = video_file_path.replace(file_ending, ".wav")
|
| 647 |
+
out_file = video_file_path.replace(file_ending, ".diarize.json")
|
| 648 |
+
|
| 649 |
+
logging.debug("getting duration of audio file")
|
| 650 |
+
with contextlib.closing(wave.open(audio_file,'r')) as f:
|
| 651 |
+
frames = f.getnframes()
|
| 652 |
+
rate = f.getframerate()
|
| 653 |
+
duration = frames / float(rate)
|
| 654 |
+
logging.debug("duration of audio file obtained")
|
| 655 |
+
print(f"duration of audio file: {duration}")
|
| 656 |
+
|
| 657 |
+
def segment_embedding(segment):
|
| 658 |
+
logging.debug("Creating embedding")
|
| 659 |
+
audio = Audio()
|
| 660 |
+
start = segment["start"]
|
| 661 |
+
end = segment["end"]
|
| 662 |
+
|
| 663 |
+
# Enforcing a minimum segment length
|
| 664 |
+
if end-start < 0.3:
|
| 665 |
+
padding = 0.3-(end-start)
|
| 666 |
+
start -= padding/2
|
| 667 |
+
end += padding/2
|
| 668 |
+
print('Padded segment because it was too short:',segment)
|
| 669 |
+
|
| 670 |
+
# Whisper overshoots the end timestamp in the last segment
|
| 671 |
+
end = min(duration, end)
|
| 672 |
+
# clip audio and embed
|
| 673 |
+
clip = Segment(start, end)
|
| 674 |
+
waveform, sample_rate = audio.crop(audio_file, clip)
|
| 675 |
+
return embedding_model(waveform[None])
|
| 676 |
+
|
| 677 |
+
embeddings = np.zeros(shape=(len(segments), embedding_size))
|
| 678 |
+
for i, segment in enumerate(tqdm.tqdm(segments)):
|
| 679 |
+
embeddings[i] = segment_embedding(segment)
|
| 680 |
+
embeddings = np.nan_to_num(embeddings)
|
| 681 |
+
print(f'Embedding shape: {embeddings.shape}')
|
| 682 |
+
|
| 683 |
+
if num_speakers == 0:
|
| 684 |
+
# Find the best number of speakers
|
| 685 |
+
score_num_speakers = {}
|
| 686 |
+
|
| 687 |
+
for num_speakers in range(2, 10+1):
|
| 688 |
+
clustering = AgglomerativeClustering(num_speakers).fit(embeddings)
|
| 689 |
+
score = silhouette_score(embeddings, clustering.labels_, metric='euclidean')
|
| 690 |
+
score_num_speakers[num_speakers] = score
|
| 691 |
+
best_num_speaker = max(score_num_speakers, key=lambda x:score_num_speakers[x])
|
| 692 |
+
print(f"The best number of speakers: {best_num_speaker} with {score_num_speakers[best_num_speaker]} score")
|
| 693 |
+
else:
|
| 694 |
+
best_num_speaker = num_speakers
|
| 695 |
+
|
| 696 |
+
# Assign speaker label
|
| 697 |
+
clustering = AgglomerativeClustering(best_num_speaker).fit(embeddings)
|
| 698 |
+
labels = clustering.labels_
|
| 699 |
+
for i in range(len(segments)):
|
| 700 |
+
segments[i]["speaker"] = 'SPEAKER ' + str(labels[i] + 1)
|
| 701 |
+
|
| 702 |
+
with open(out_file,'w') as f:
|
| 703 |
+
f.write(json.dumps(segments, indent=2))
|
| 704 |
+
|
| 705 |
+
# Make CSV output
|
| 706 |
+
def convert_time(secs):
|
| 707 |
+
return datetime.timedelta(seconds=round(secs))
|
| 708 |
+
|
| 709 |
+
objects = {
|
| 710 |
+
'Start' : [],
|
| 711 |
+
'End': [],
|
| 712 |
+
'Speaker': [],
|
| 713 |
+
'Text': []
|
| 714 |
+
}
|
| 715 |
+
text = ''
|
| 716 |
+
for (i, segment) in enumerate(segments):
|
| 717 |
+
if i == 0 or segments[i - 1]["speaker"] != segment["speaker"]:
|
| 718 |
+
objects['Start'].append(str(convert_time(segment["start"])))
|
| 719 |
+
objects['Speaker'].append(segment["speaker"])
|
| 720 |
+
if i != 0:
|
| 721 |
+
objects['End'].append(str(convert_time(segments[i - 1]["end"])))
|
| 722 |
+
objects['Text'].append(text)
|
| 723 |
+
text = ''
|
| 724 |
+
text += segment["text"] + ' '
|
| 725 |
+
objects['End'].append(str(convert_time(segments[i - 1]["end"])))
|
| 726 |
+
objects['Text'].append(text)
|
| 727 |
+
|
| 728 |
+
save_path = video_file_path.replace(file_ending, ".csv")
|
| 729 |
+
df_results = pd.DataFrame(objects)
|
| 730 |
+
df_results.to_csv(save_path)
|
| 731 |
+
return df_results, save_path
|
| 732 |
+
|
| 733 |
+
except Exception as e:
|
| 734 |
+
raise RuntimeError("Error Running inference with local model", e)
|
| 735 |
+
#
|
| 736 |
+
#
|
| 737 |
+
####################################################################################################################################
|
| 738 |
+
|
| 739 |
+
|
| 740 |
+
|
| 741 |
+
|
| 742 |
+
|
| 743 |
+
|
| 744 |
+
####################################################################################################################################
|
| 745 |
+
#Summarizers
|
| 746 |
+
#
|
| 747 |
+
#
|
| 748 |
+
|
| 749 |
+
# Summarize with OpenAI ChatGPT
|
| 750 |
+
def extract_text_from_segments(segments):
|
| 751 |
+
logging.debug(f"openai: extracting text from {segments}")
|
| 752 |
+
text = ' '.join([segment['text'] for segment in segments])
|
| 753 |
+
return text
|
| 754 |
+
|
| 755 |
+
|
| 756 |
+
|
| 757 |
+
def summarize_with_openai(api_key, file_path, model):
|
| 758 |
+
try:
|
| 759 |
+
logging.debug("openai: Loading json data for summarization")
|
| 760 |
+
with open(file_path, 'r') as file:
|
| 761 |
+
segments = json.load(file)
|
| 762 |
+
|
| 763 |
+
logging.debug("openai: Extracting text from the segments")
|
| 764 |
+
text = extract_text_from_segments(segments)
|
| 765 |
+
|
| 766 |
+
headers = {
|
| 767 |
+
'Authorization': f'Bearer {api_key}',
|
| 768 |
+
'Content-Type': 'application/json'
|
| 769 |
+
}
|
| 770 |
+
|
| 771 |
+
logging.debug("openai: Preparing data + prompt for submittal")
|
| 772 |
+
prompt_text = f"{text} \n\n\n\nPlease provide a detailed, bulleted list of the points made throughout the transcribed video and any supporting arguments made for said points"
|
| 773 |
+
data = {
|
| 774 |
+
"model": model,
|
| 775 |
+
"messages": [
|
| 776 |
+
{
|
| 777 |
+
"role": "system",
|
| 778 |
+
"content": "You are a professional summarizer."
|
| 779 |
+
},
|
| 780 |
+
{
|
| 781 |
+
"role": "user",
|
| 782 |
+
"content": prompt_text
|
| 783 |
+
}
|
| 784 |
+
],
|
| 785 |
+
"max_tokens": 4096, # Adjust tokens as needed
|
| 786 |
+
"temperature": 0.7
|
| 787 |
+
}
|
| 788 |
+
logging.debug("openai: Posting request")
|
| 789 |
+
response = requests.post('https://api.openai.com/v1/chat/completions', headers=headers, json=data)
|
| 790 |
+
|
| 791 |
+
if response.status_code == 200:
|
| 792 |
+
summary = response.json()['choices'][0]['message']['content'].strip()
|
| 793 |
+
logging.debug("openai: Summarization successful")
|
| 794 |
+
print("Summarization successful.")
|
| 795 |
+
return summary
|
| 796 |
+
else:
|
| 797 |
+
logging.debug("openai: Summarization failed")
|
| 798 |
+
print("Failed to process summary:", response.text)
|
| 799 |
+
return None
|
| 800 |
+
except Exception as e:
|
| 801 |
+
logging.debug("openai: Error in processing: %s", str(e))
|
| 802 |
+
print("Error occurred while processing summary with openai:", str(e))
|
| 803 |
+
return None
|
| 804 |
+
|
| 805 |
+
|
| 806 |
+
|
| 807 |
+
def summarize_with_claude(api_key, file_path, model):
|
| 808 |
+
try:
|
| 809 |
+
logging.debug("anthropic: Loading JSON data")
|
| 810 |
+
with open(file_path, 'r') as file:
|
| 811 |
+
segments = json.load(file)
|
| 812 |
+
|
| 813 |
+
logging.debug("anthropic: Extracting text from the segments file")
|
| 814 |
+
text = extract_text_from_segments(segments)
|
| 815 |
+
|
| 816 |
+
headers = {
|
| 817 |
+
'x-api-key': api_key,
|
| 818 |
+
'anthropic-version': '2023-06-01',
|
| 819 |
+
'Content-Type': 'application/json'
|
| 820 |
+
}
|
| 821 |
+
|
| 822 |
+
logging.debug("anthropic: Prepping data + prompt for submittal")
|
| 823 |
+
user_message = {
|
| 824 |
+
"role": "user",
|
| 825 |
+
"content": f"{text} \n\n\n\nPlease provide a detailed, bulleted list of the points made throughout the transcribed video and any supporting arguments made for said points"
|
| 826 |
+
}
|
| 827 |
+
|
| 828 |
+
data = {
|
| 829 |
+
"model": model,
|
| 830 |
+
"max_tokens": 4096, # max _possible_ tokens to return
|
| 831 |
+
"messages": [user_message],
|
| 832 |
+
"stop_sequences": ["\n\nHuman:"],
|
| 833 |
+
"temperature": 0.7,
|
| 834 |
+
"top_k": 0,
|
| 835 |
+
"top_p": 1.0,
|
| 836 |
+
"metadata": {
|
| 837 |
+
"user_id": "example_user_id",
|
| 838 |
+
},
|
| 839 |
+
"stream": False,
|
| 840 |
+
"system": "You are a professional summarizer."
|
| 841 |
+
}
|
| 842 |
+
|
| 843 |
+
logging.debug("anthropic: Posting request to API")
|
| 844 |
+
response = requests.post('https://api.anthropic.com/v1/messages', headers=headers, json=data)
|
| 845 |
+
|
| 846 |
+
# Check if the status code indicates success
|
| 847 |
+
if response.status_code == 200:
|
| 848 |
+
logging.debug("anthropic: Post submittal successful")
|
| 849 |
+
response_data = response.json()
|
| 850 |
+
try:
|
| 851 |
+
summary = response_data['content'][0]['text'].strip()
|
| 852 |
+
logging.debug("anthropic: Summarization succesful")
|
| 853 |
+
print("Summary processed successfully.")
|
| 854 |
+
return summary
|
| 855 |
+
except (IndexError, KeyError) as e:
|
| 856 |
+
logging.debug("anthropic: Unexpected data in response")
|
| 857 |
+
print("Unexpected response format from Claude API:", response.text)
|
| 858 |
+
return None
|
| 859 |
+
elif response.status_code == 500: # Handle internal server error specifically
|
| 860 |
+
logging.debug("anthropic: Internal server error")
|
| 861 |
+
print("Internal server error from API. Retrying may be necessary.")
|
| 862 |
+
return None
|
| 863 |
+
else:
|
| 864 |
+
logging.debug(f"anthropic: Failed to summarize, status code {response.status_code}: {response.text}")
|
| 865 |
+
print(f"Failed to process summary, status code {response.status_code}: {response.text}")
|
| 866 |
+
return None
|
| 867 |
+
|
| 868 |
+
except Exception as e:
|
| 869 |
+
logging.debug("anthropic: Error in processing: %s", str(e))
|
| 870 |
+
print("Error occurred while processing summary with anthropic:", str(e))
|
| 871 |
+
return None
|
| 872 |
+
|
| 873 |
+
|
| 874 |
+
|
| 875 |
+
# Summarize with Cohere
|
| 876 |
+
def summarize_with_cohere(api_key, file_path, model):
|
| 877 |
+
try:
|
| 878 |
+
logging.basicConfig(level=logging.DEBUG)
|
| 879 |
+
logging.debug("cohere: Loading JSON data")
|
| 880 |
+
with open(file_path, 'r') as file:
|
| 881 |
+
segments = json.load(file)
|
| 882 |
+
|
| 883 |
+
logging.debug(f"cohere: Extracting text from segments file")
|
| 884 |
+
text = extract_text_from_segments(segments)
|
| 885 |
+
|
| 886 |
+
headers = {
|
| 887 |
+
'accept': 'application/json',
|
| 888 |
+
'content-type': 'application/json',
|
| 889 |
+
'Authorization': f'Bearer {api_key}'
|
| 890 |
+
}
|
| 891 |
+
|
| 892 |
+
prompt_text = f"{text} \n\nAs a professional summarizer, create a concise and comprehensive summary of the provided text."
|
| 893 |
+
data = {
|
| 894 |
+
"chat_history": [
|
| 895 |
+
{"role": "USER", "message": prompt_text}
|
| 896 |
+
],
|
| 897 |
+
"message": "Please provide a summary.",
|
| 898 |
+
"model": model,
|
| 899 |
+
"connectors": [{"id": "web-search"}]
|
| 900 |
+
}
|
| 901 |
+
|
| 902 |
+
logging.debug("cohere: Submitting request to API endpoint")
|
| 903 |
+
print("cohere: Submitting request to API endpoint")
|
| 904 |
+
response = requests.post('https://api.cohere.ai/v1/chat', headers=headers, json=data)
|
| 905 |
+
response_data = response.json()
|
| 906 |
+
logging.debug("API Response Data: %s", response_data)
|
| 907 |
+
|
| 908 |
+
if response.status_code == 200:
|
| 909 |
+
if 'text' in response_data:
|
| 910 |
+
summary = response_data['text'].strip()
|
| 911 |
+
logging.debug("cohere: Summarization successful")
|
| 912 |
+
print("Summary processed successfully.")
|
| 913 |
+
return summary
|
| 914 |
+
else:
|
| 915 |
+
logging.error("Expected data not found in API response.")
|
| 916 |
+
return "Expected data not found in API response."
|
| 917 |
+
else:
|
| 918 |
+
logging.error(f"cohere: API request failed with status code {response.status_code}: {resposne.text}")
|
| 919 |
+
print(f"Failed to process summary, status code {response.status_code}: {response.text}")
|
| 920 |
+
return f"cohere: API request failed: {response.text}"
|
| 921 |
+
|
| 922 |
+
except Exception as e:
|
| 923 |
+
logging.error("cohere: Error in processing: %s", str(e))
|
| 924 |
+
return f"cohere: Error occurred while processing summary with Cohere: {str(e)}"
|
| 925 |
+
|
| 926 |
+
|
| 927 |
+
|
| 928 |
+
# https://console.groq.com/docs/quickstart
|
| 929 |
+
def summarize_with_groq(api_key, file_path, model):
|
| 930 |
+
try:
|
| 931 |
+
logging.debug("groq: Loading JSON data")
|
| 932 |
+
with open(file_path, 'r') as file:
|
| 933 |
+
segments = json.load(file)
|
| 934 |
+
|
| 935 |
+
logging.debug(f"groq: Extracting text from segments file")
|
| 936 |
+
text = extract_text_from_segments(segments)
|
| 937 |
+
|
| 938 |
+
headers = {
|
| 939 |
+
'Authorization': f'Bearer {api_key}',
|
| 940 |
+
'Content-Type': 'application/json'
|
| 941 |
+
}
|
| 942 |
+
|
| 943 |
+
prompt_text = f"{text} \n\nAs a professional summarizer, create a concise and comprehensive summary of the provided text."
|
| 944 |
+
data = {
|
| 945 |
+
"messages": [
|
| 946 |
+
{
|
| 947 |
+
"role": "user",
|
| 948 |
+
"content": prompt_text
|
| 949 |
+
}
|
| 950 |
+
],
|
| 951 |
+
"model": model
|
| 952 |
+
}
|
| 953 |
+
|
| 954 |
+
logging.debug("groq: Submitting request to API endpoint")
|
| 955 |
+
print("groq: Submitting request to API endpoint")
|
| 956 |
+
response = requests.post('https://api.groq.com/openai/v1/chat/completions', headers=headers, json=data)
|
| 957 |
+
|
| 958 |
+
response_data = response.json()
|
| 959 |
+
logging.debug("API Response Data: %s", response_data)
|
| 960 |
+
|
| 961 |
+
if response.status_code == 200:
|
| 962 |
+
if 'choices' in response_data and len(response_data['choices']) > 0:
|
| 963 |
+
summary = response_data['choices'][0]['message']['content'].strip()
|
| 964 |
+
logging.debug("groq: Summarization successful")
|
| 965 |
+
print("Summarization successful.")
|
| 966 |
+
return summary
|
| 967 |
+
else:
|
| 968 |
+
logging.error("Expected data not found in API response.")
|
| 969 |
+
return "Expected data not found in API response."
|
| 970 |
+
else:
|
| 971 |
+
logging.error(f"groq: API request failed with status code {response.status_code}: {response.text}")
|
| 972 |
+
return f"groq: API request failed: {response.text}"
|
| 973 |
+
|
| 974 |
+
except Exception as e:
|
| 975 |
+
logging.error("groq: Error in processing: %s", str(e))
|
| 976 |
+
return f"groq: Error occurred while processing summary with groq: {str(e)}"
|
| 977 |
+
|
| 978 |
+
|
| 979 |
+
#################################
|
| 980 |
+
#
|
| 981 |
+
# Local Summarization
|
| 982 |
+
|
| 983 |
+
def summarize_with_llama(api_url, file_path, token):
|
| 984 |
+
try:
|
| 985 |
+
logging.debug("llama: Loading JSON data")
|
| 986 |
+
with open(file_path, 'r') as file:
|
| 987 |
+
segments = json.load(file)
|
| 988 |
+
|
| 989 |
+
logging.debug(f"llama: Extracting text from segments file")
|
| 990 |
+
text = extract_text_from_segments(segments) # Define this function to extract text properly
|
| 991 |
+
|
| 992 |
+
headers = {
|
| 993 |
+
'accept': 'application/json',
|
| 994 |
+
'content-type': 'application/json',
|
| 995 |
+
}
|
| 996 |
+
if len(token)>5:
|
| 997 |
+
headers['Authorization'] = f'Bearer {token}'
|
| 998 |
+
|
| 999 |
+
|
| 1000 |
+
prompt_text = f"{text} \n\nAs a professional summarizer, create a concise and comprehensive summary of the provided text."
|
| 1001 |
+
data = {
|
| 1002 |
+
"prompt": prompt_text
|
| 1003 |
+
}
|
| 1004 |
+
|
| 1005 |
+
logging.debug("llama: Submitting request to API endpoint")
|
| 1006 |
+
print("llama: Submitting request to API endpoint")
|
| 1007 |
+
response = requests.post(api_url, headers=headers, json=data)
|
| 1008 |
+
response_data = response.json()
|
| 1009 |
+
logging.debug("API Response Data: %s", response_data)
|
| 1010 |
+
|
| 1011 |
+
if response.status_code == 200:
|
| 1012 |
+
#if 'X' in response_data:
|
| 1013 |
+
logging.debug(response_data)
|
| 1014 |
+
summary = response_data['content'].strip()
|
| 1015 |
+
logging.debug("llama: Summarization successful")
|
| 1016 |
+
print("Summarization successful.")
|
| 1017 |
+
return summary
|
| 1018 |
+
else:
|
| 1019 |
+
logging.error(f"llama: API request failed with status code {response.status_code}: {response.text}")
|
| 1020 |
+
return f"llama: API request failed: {response.text}"
|
| 1021 |
+
|
| 1022 |
+
except Exception as e:
|
| 1023 |
+
logging.error("llama: Error in processing: %s", str(e))
|
| 1024 |
+
return f"llama: Error occurred while processing summary with llama: {str(e)}"
|
| 1025 |
+
|
| 1026 |
+
|
| 1027 |
+
|
| 1028 |
+
# https://lite.koboldai.net/koboldcpp_api#/api%2Fv1/post_api_v1_generate
|
| 1029 |
+
def summarize_with_kobold(api_url, file_path):
|
| 1030 |
+
try:
|
| 1031 |
+
logging.debug("kobold: Loading JSON data")
|
| 1032 |
+
with open(file_path, 'r') as file:
|
| 1033 |
+
segments = json.load(file)
|
| 1034 |
+
|
| 1035 |
+
logging.debug(f"kobold: Extracting text from segments file")
|
| 1036 |
+
text = extract_text_from_segments(segments)
|
| 1037 |
+
|
| 1038 |
+
headers = {
|
| 1039 |
+
'accept': 'application/json',
|
| 1040 |
+
'content-type': 'application/json',
|
| 1041 |
+
}
|
| 1042 |
+
# FIXME
|
| 1043 |
+
prompt_text = f"{text} \n\nAs a professional summarizer, create a concise and comprehensive summary of the above text."
|
| 1044 |
+
logging.debug(prompt_text)
|
| 1045 |
+
# Values literally c/p from the api docs....
|
| 1046 |
+
data = {
|
| 1047 |
+
"max_context_length": 8096,
|
| 1048 |
+
"max_length": 4096,
|
| 1049 |
+
"prompt": prompt_text,
|
| 1050 |
+
}
|
| 1051 |
+
|
| 1052 |
+
logging.debug("kobold: Submitting request to API endpoint")
|
| 1053 |
+
print("kobold: Submitting request to API endpoint")
|
| 1054 |
+
response = requests.post(api_url, headers=headers, json=data)
|
| 1055 |
+
response_data = response.json()
|
| 1056 |
+
logging.debug("kobold: API Response Data: %s", response_data)
|
| 1057 |
+
|
| 1058 |
+
if response.status_code == 200:
|
| 1059 |
+
if 'results' in response_data and len(response_data['results']) > 0:
|
| 1060 |
+
summary = response_data['results'][0]['text'].strip()
|
| 1061 |
+
logging.debug("kobold: Summarization successful")
|
| 1062 |
+
print("Summarization successful.")
|
| 1063 |
+
return summary
|
| 1064 |
+
else:
|
| 1065 |
+
logging.error("Expected data not found in API response.")
|
| 1066 |
+
return "Expected data not found in API response."
|
| 1067 |
+
else:
|
| 1068 |
+
logging.error(f"kobold: API request failed with status code {response.status_code}: {response.text}")
|
| 1069 |
+
return f"kobold: API request failed: {response.text}"
|
| 1070 |
+
|
| 1071 |
+
except Exception as e:
|
| 1072 |
+
logging.error("kobold: Error in processing: %s", str(e))
|
| 1073 |
+
return f"kobold: Error occurred while processing summary with kobold: {str(e)}"
|
| 1074 |
+
|
| 1075 |
+
|
| 1076 |
+
|
| 1077 |
+
# https://github.com/oobabooga/text-generation-webui/wiki/12-%E2%80%90-OpenAI-API
|
| 1078 |
+
def summarize_with_oobabooga(api_url, file_path):
|
| 1079 |
+
try:
|
| 1080 |
+
logging.debug("ooba: Loading JSON data")
|
| 1081 |
+
with open(file_path, 'r') as file:
|
| 1082 |
+
segments = json.load(file)
|
| 1083 |
+
|
| 1084 |
+
logging.debug(f"ooba: Extracting text from segments file\n\n\n")
|
| 1085 |
+
text = extract_text_from_segments(segments)
|
| 1086 |
+
logging.debug(f"ooba: Finished extracting text from segments file")
|
| 1087 |
+
|
| 1088 |
+
headers = {
|
| 1089 |
+
'accept': 'application/json',
|
| 1090 |
+
'content-type': 'application/json',
|
| 1091 |
+
}
|
| 1092 |
+
|
| 1093 |
+
prompt_text = "I like to eat cake and bake cakes. I am a baker. I work in a french bakery baking cakes. It is a fun job. I have been baking cakes for ten years. I also bake lots of other baked goods, but cakes are my favorite."
|
| 1094 |
+
# prompt_text += f"\n\n{text}" # Uncomment this line if you want to include the text variable
|
| 1095 |
+
prompt_text += "\n\nAs a professional summarizer, create a concise and comprehensive summary of the provided text."
|
| 1096 |
+
|
| 1097 |
+
data = {
|
| 1098 |
+
"mode": "chat",
|
| 1099 |
+
"character": "Example",
|
| 1100 |
+
"messages": [{"role": "user", "content": prompt_text}]
|
| 1101 |
+
}
|
| 1102 |
+
|
| 1103 |
+
logging.debug("ooba: Submitting request to API endpoint")
|
| 1104 |
+
print("ooba: Submitting request to API endpoint")
|
| 1105 |
+
response = requests.post(api_url, headers=headers, json=data, verify=False)
|
| 1106 |
+
logging.debug("ooba: API Response Data: %s", response)
|
| 1107 |
+
|
| 1108 |
+
if response.status_code == 200:
|
| 1109 |
+
response_data = response.json()
|
| 1110 |
+
summary = response.json()['choices'][0]['message']['content']
|
| 1111 |
+
logging.debug("ooba: Summarization successful")
|
| 1112 |
+
print("Summarization successful.")
|
| 1113 |
+
return summary
|
| 1114 |
+
else:
|
| 1115 |
+
logging.error(f"oobabooga: API request failed with status code {response.status_code}: {response.text}")
|
| 1116 |
+
return f"ooba: API request failed with status code {response.status_code}: {response.text}"
|
| 1117 |
+
|
| 1118 |
+
except Exception as e:
|
| 1119 |
+
logging.error("ooba: Error in processing: %s", str(e))
|
| 1120 |
+
return f"ooba: Error occurred while processing summary with oobabooga: {str(e)}"
|
| 1121 |
+
|
| 1122 |
+
|
| 1123 |
+
|
| 1124 |
+
def save_summary_to_file(summary, file_path):
|
| 1125 |
+
summary_file_path = file_path.replace('.segments.json', '_summary.txt')
|
| 1126 |
+
logging.debug("Opening summary file for writing, *segments.json with *_summary.txt")
|
| 1127 |
+
with open(summary_file_path, 'w') as file:
|
| 1128 |
+
file.write(summary)
|
| 1129 |
+
logging.info(f"Summary saved to file: {summary_file_path}")
|
| 1130 |
+
|
| 1131 |
+
#
|
| 1132 |
+
#
|
| 1133 |
+
####################################################################################################################################
|
| 1134 |
+
|
| 1135 |
+
|
| 1136 |
+
|
| 1137 |
+
|
| 1138 |
+
|
| 1139 |
+
|
| 1140 |
+
####################################################################################################################################
|
| 1141 |
+
# Gradio UI
|
| 1142 |
+
#
|
| 1143 |
+
|
| 1144 |
+
# Only to be used when configured with Gradio for HF Space
|
| 1145 |
+
def summarize_with_huggingface(api_key, file_path):
|
| 1146 |
+
logging.debug(f"huggingface: Summarization process starting...")
|
| 1147 |
+
try:
|
| 1148 |
+
logging.debug("huggingface: Loading json data for summarization")
|
| 1149 |
+
with open(file_path, 'r') as file:
|
| 1150 |
+
segments = json.load(file)
|
| 1151 |
+
|
| 1152 |
+
logging.debug("huggingface: Extracting text from the segments")
|
| 1153 |
+
text = ' '.join([segment['text'] for segment in segments])
|
| 1154 |
+
|
| 1155 |
+
api_key = os.environ.get('HF_TOKEN')
|
| 1156 |
+
headers = {
|
| 1157 |
+
"Authorization": f"Bearer {api_key}"
|
| 1158 |
+
}
|
| 1159 |
+
model = "microsoft/Phi-3-mini-128k-instruct"
|
| 1160 |
+
API_URL = f"https://api-inference.huggingface.co/models/{model}"
|
| 1161 |
+
data = {
|
| 1162 |
+
"inputs": text,
|
| 1163 |
+
"parameters": {"max_length": 512, "min_length": 100} # You can adjust max_length and min_length as needed
|
| 1164 |
+
}
|
| 1165 |
+
|
| 1166 |
+
logging.debug("huggingface: Submitting request...")
|
| 1167 |
+
response = requests.post(API_URL, headers=headers, json=data)
|
| 1168 |
+
|
| 1169 |
+
if response.status_code == 200:
|
| 1170 |
+
summary = response.json()[0]['summary_text']
|
| 1171 |
+
logging.debug("huggingface: Summarization successful")
|
| 1172 |
+
print("Summarization successful.")
|
| 1173 |
+
return summary
|
| 1174 |
+
else:
|
| 1175 |
+
logging.error(f"huggingface: Summarization failed with status code {response.status_code}: {response.text}")
|
| 1176 |
+
return f"Failed to process summary, status code {response.status_code}: {response.text}"
|
| 1177 |
+
except Exception as e:
|
| 1178 |
+
logging.error("huggingface: Error in processing: %s", str(e))
|
| 1179 |
+
print(f"Error occurred while processing summary with huggingface: {str(e)}")
|
| 1180 |
+
return None
|
| 1181 |
+
|
| 1182 |
+
|
| 1183 |
+
|
| 1184 |
+
def same_auth(username, password):
|
| 1185 |
+
return username == password
|
| 1186 |
+
|
| 1187 |
+
|
| 1188 |
+
|
| 1189 |
+
def launch_ui(demo_mode=False):
|
| 1190 |
+
def process_transcription(json_data):
|
| 1191 |
+
if json_data:
|
| 1192 |
+
return "\n".join([item["text"] for item in json_data])
|
| 1193 |
+
else:
|
| 1194 |
+
return ""
|
| 1195 |
+
|
| 1196 |
+
inputs = [
|
| 1197 |
+
gr.components.Textbox(label="URL"),
|
| 1198 |
+
gr.components.Number(value=2, label="Number of Speakers"),
|
| 1199 |
+
gr.components.Dropdown(choices=whisper_models, value="small.en", label="Whisper Model"),
|
| 1200 |
+
gr.components.Number(value=0, label="Offset")
|
| 1201 |
+
]
|
| 1202 |
+
|
| 1203 |
+
if not demo_mode:
|
| 1204 |
+
inputs.extend([
|
| 1205 |
+
gr.components.Dropdown(choices=["huggingface", "openai", "anthropic", "cohere", "groq", "llama", "kobold", "ooba"], value="anthropic", label="API Name"),
|
| 1206 |
+
gr.components.Textbox(label="API Key"),
|
| 1207 |
+
gr.components.Checkbox(value=False, label="VAD Filter"),
|
| 1208 |
+
gr.components.Checkbox(value=False, label="Download Video")
|
| 1209 |
+
])
|
| 1210 |
+
|
| 1211 |
+
iface = gr.Interface(
|
| 1212 |
+
fn=lambda *args: process_url(*args, demo_mode=demo_mode),
|
| 1213 |
+
inputs=inputs,
|
| 1214 |
+
outputs=[
|
| 1215 |
+
gr.components.Textbox(label="Transcription", value=lambda: "", max_lines=10),
|
| 1216 |
+
gr.components.Textbox(label="Summary"),
|
| 1217 |
+
gr.components.File(label="Download Transcription as JSON"),
|
| 1218 |
+
gr.components.File(label="Download Summary as text", visible=lambda summary_file_path: summary_file_path is not None)
|
| 1219 |
+
],
|
| 1220 |
+
title="Video Transcription and Summarization",
|
| 1221 |
+
description="Submit a video URL for transcription and summarization.",
|
| 1222 |
+
allow_flagging="never"
|
| 1223 |
+
)
|
| 1224 |
+
|
| 1225 |
+
iface.launch(share=True)
|
| 1226 |
+
|
| 1227 |
+
#
|
| 1228 |
+
#
|
| 1229 |
+
#####################################################################################################################################
|
| 1230 |
+
|
| 1231 |
+
|
| 1232 |
+
|
| 1233 |
+
|
| 1234 |
+
|
| 1235 |
+
|
| 1236 |
+
|
| 1237 |
+
####################################################################################################################################
|
| 1238 |
+
# Main()
|
| 1239 |
+
#
|
| 1240 |
+
def main(input_path, api_name=None, api_key=None, num_speakers=2, whisper_model="small.en", offset=0, vad_filter=False, download_video_flag=False):
|
| 1241 |
+
if input_path is None and args.user_interface:
|
| 1242 |
+
return []
|
| 1243 |
+
start_time = time.monotonic()
|
| 1244 |
+
paths = [] # Initialize paths as an empty list
|
| 1245 |
+
if os.path.isfile(input_path) and input_path.endswith('.txt'):
|
| 1246 |
+
logging.debug("MAIN: User passed in a text file, processing text file...")
|
| 1247 |
+
paths = read_paths_from_file(input_path)
|
| 1248 |
+
elif os.path.exists(input_path):
|
| 1249 |
+
logging.debug("MAIN: Local file path detected")
|
| 1250 |
+
paths = [input_path]
|
| 1251 |
+
elif (info_dict := get_youtube(input_path)) and 'entries' in info_dict:
|
| 1252 |
+
logging.debug("MAIN: YouTube playlist detected")
|
| 1253 |
+
print("\n\nSorry, but playlists aren't currently supported. You can run the following command to generate a text file that you can then pass into this script though! (It may not work... playlist support seems spotty)" + """\n\n\tpython Get_Playlist_URLs.py <Youtube Playlist URL>\n\n\tThen,\n\n\tpython diarizer.py <playlist text file name>\n\n""")
|
| 1254 |
+
return
|
| 1255 |
+
else:
|
| 1256 |
+
paths = [input_path]
|
| 1257 |
+
results = []
|
| 1258 |
+
|
| 1259 |
+
for path in paths:
|
| 1260 |
+
try:
|
| 1261 |
+
if path.startswith('http'):
|
| 1262 |
+
logging.debug("MAIN: URL Detected")
|
| 1263 |
+
info_dict = get_youtube(path)
|
| 1264 |
+
if info_dict:
|
| 1265 |
+
logging.debug("MAIN: Creating path for video file...")
|
| 1266 |
+
download_path = create_download_directory(info_dict['title'])
|
| 1267 |
+
logging.debug("MAIN: Path created successfully")
|
| 1268 |
+
logging.debug("MAIN: Downloading video from yt_dlp...")
|
| 1269 |
+
video_path = download_video(path, download_path, info_dict, download_video_flag)
|
| 1270 |
+
logging.debug("MAIN: Video downloaded successfully")
|
| 1271 |
+
logging.debug("MAIN: Converting video file to WAV...")
|
| 1272 |
+
audio_file = convert_to_wav(video_path, offset)
|
| 1273 |
+
logging.debug("MAIN: Audio file converted succesfully")
|
| 1274 |
+
else:
|
| 1275 |
+
if os.path.exists(path):
|
| 1276 |
+
logging.debug("MAIN: Local file path detected")
|
| 1277 |
+
download_path, info_dict, audio_file = process_local_file(path)
|
| 1278 |
+
else:
|
| 1279 |
+
logging.error(f"File does not exist: {path}")
|
| 1280 |
+
continue
|
| 1281 |
+
|
| 1282 |
+
if info_dict:
|
| 1283 |
+
logging.debug("MAIN: Creating transcription file from WAV")
|
| 1284 |
+
segments = speech_to_text(audio_file, whisper_model=whisper_model, vad_filter=vad_filter)
|
| 1285 |
+
transcription_result = {
|
| 1286 |
+
'video_path': path,
|
| 1287 |
+
'audio_file': audio_file,
|
| 1288 |
+
'transcription': segments
|
| 1289 |
+
}
|
| 1290 |
+
results.append(transcription_result)
|
| 1291 |
+
logging.info(f"Transcription complete: {audio_file}")
|
| 1292 |
+
|
| 1293 |
+
# Perform summarization based on the specified API
|
| 1294 |
+
if api_name and api_key:
|
| 1295 |
+
logging.debug(f"MAIN: Summarization being performed by {api_name}")
|
| 1296 |
+
json_file_path = audio_file.replace('.wav', '.segments.json')
|
| 1297 |
+
if api_name.lower() == 'openai':
|
| 1298 |
+
api_key = openai_api_key
|
| 1299 |
+
try:
|
| 1300 |
+
logging.debug(f"MAIN: trying to summarize with openAI")
|
| 1301 |
+
summary = summarize_with_openai(api_key, json_file_path, openai_model)
|
| 1302 |
+
except requests.exceptions.ConnectionError:
|
| 1303 |
+
r.status_code = "Connection: "
|
| 1304 |
+
elif api_name.lower() == 'anthropic':
|
| 1305 |
+
api_key = anthropic_api_key
|
| 1306 |
+
try:
|
| 1307 |
+
logging.debug(f"MAIN: Trying to summarize with anthropic")
|
| 1308 |
+
summary = summarize_with_claude(api_key, json_file_path, anthropic_model)
|
| 1309 |
+
except requests.exceptions.ConnectionError:
|
| 1310 |
+
r.status_code = "Connection: "
|
| 1311 |
+
elif api_name.lower() == 'cohere':
|
| 1312 |
+
api_key = cohere_api_key
|
| 1313 |
+
try:
|
| 1314 |
+
logging.debug(f"MAIN: Trying to summarize with cohere")
|
| 1315 |
+
summary = summarize_with_cohere(api_key, json_file_path, cohere_model)
|
| 1316 |
+
except requests.exceptions.ConnectionError:
|
| 1317 |
+
r.status_code = "Connection: "
|
| 1318 |
+
elif api_name.lower() == 'groq':
|
| 1319 |
+
api_key = groq_api_key
|
| 1320 |
+
try:
|
| 1321 |
+
logging.debug(f"MAIN: Trying to summarize with Groq")
|
| 1322 |
+
summary = summarize_with_groq(api_key, json_file_path, groq_model)
|
| 1323 |
+
except requests.exceptions.ConnectionError:
|
| 1324 |
+
r.status_code = "Connection: "
|
| 1325 |
+
elif api_name.lower() == 'llama':
|
| 1326 |
+
token = llama_api_key
|
| 1327 |
+
llama_ip = llama_api_IP
|
| 1328 |
+
try:
|
| 1329 |
+
logging.debug(f"MAIN: Trying to summarize with Llama.cpp")
|
| 1330 |
+
summary = summarize_with_llama(llama_ip, json_file_path, token)
|
| 1331 |
+
except requests.exceptions.ConnectionError:
|
| 1332 |
+
r.status_code = "Connection: "
|
| 1333 |
+
elif api_name.lower() == 'kobold':
|
| 1334 |
+
token = kobold_api_key
|
| 1335 |
+
kobold_ip = kobold_api_IP
|
| 1336 |
+
try:
|
| 1337 |
+
logging.debug(f"MAIN: Trying to summarize with kobold.cpp")
|
| 1338 |
+
summary = summarize_with_kobold(kobold_ip, json_file_path)
|
| 1339 |
+
except requests.exceptions.ConnectionError:
|
| 1340 |
+
r.status_code = "Connection: "
|
| 1341 |
+
elif api_name.lower() == 'ooba':
|
| 1342 |
+
token = ooba_api_key
|
| 1343 |
+
ooba_ip = ooba_api_IP
|
| 1344 |
+
try:
|
| 1345 |
+
logging.debug(f"MAIN: Trying to summarize with oobabooga")
|
| 1346 |
+
summary = summarize_with_oobabooga(ooba_ip, json_file_path)
|
| 1347 |
+
except requests.exceptions.ConnectionError:
|
| 1348 |
+
r.status_code = "Connection: "
|
| 1349 |
+
if api_name.lower() == 'huggingface':
|
| 1350 |
+
api_key = huggingface_api_key
|
| 1351 |
+
try:
|
| 1352 |
+
logging.debug(f"MAIN: Trying to summarize with huggingface")
|
| 1353 |
+
summarize_with_huggingface(api_key, json_file_path)
|
| 1354 |
+
except requests.exceptions.ConnectionError:
|
| 1355 |
+
r.status_code = "Connection: "
|
| 1356 |
+
|
| 1357 |
+
else:
|
| 1358 |
+
logging.warning(f"Unsupported API: {api_name}")
|
| 1359 |
+
summary = None
|
| 1360 |
+
|
| 1361 |
+
if summary:
|
| 1362 |
+
transcription_result['summary'] = summary
|
| 1363 |
+
logging.info(f"Summary generated using {api_name} API")
|
| 1364 |
+
save_summary_to_file(summary, json_file_path)
|
| 1365 |
+
else:
|
| 1366 |
+
logging.warning(f"Failed to generate summary using {api_name} API")
|
| 1367 |
+
else:
|
| 1368 |
+
logging.info("No API specified. Summarization will not be performed")
|
| 1369 |
+
except Exception as e:
|
| 1370 |
+
logging.error(f"Error processing path: {path}")
|
| 1371 |
+
logging.error(str(e))
|
| 1372 |
+
end_time = time.monotonic()
|
| 1373 |
+
#print("Total program execution time: " + timedelta(seconds=end_time - start_time))
|
| 1374 |
+
|
| 1375 |
+
return results
|
| 1376 |
+
|
| 1377 |
+
|
| 1378 |
+
|
| 1379 |
+
if __name__ == "__main__":
|
| 1380 |
+
parser = argparse.ArgumentParser(description='Transcribe and summarize videos.')
|
| 1381 |
+
parser.add_argument('input_path', type=str, help='Path or URL of the video', nargs='?')
|
| 1382 |
+
parser.add_argument('-v','--video', action='store_true', help='Download the video instead of just the audio')
|
| 1383 |
+
parser.add_argument('-api', '--api_name', type=str, help='API name for summarization (optional)')
|
| 1384 |
+
parser.add_argument('-key', '--api_key', type=str, help='API key for summarization (optional)')
|
| 1385 |
+
parser.add_argument('-ns', '--num_speakers', type=int, default=2, help='Number of speakers (default: 2)')
|
| 1386 |
+
parser.add_argument('-wm', '--whisper_model', type=str, default='small.en', help='Whisper model (default: small.en)')
|
| 1387 |
+
parser.add_argument('-off', '--offset', type=int, default=0, help='Offset in seconds (default: 0)')
|
| 1388 |
+
parser.add_argument('-vad', '--vad_filter', action='store_true', help='Enable VAD filter')
|
| 1389 |
+
parser.add_argument('-log', '--log_level', type=str, default='INFO', choices=['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'], help='Log level (default: INFO)')
|
| 1390 |
+
parser.add_argument('-ui', '--user_interface', action='store_true', help='Launch the Gradio user interface')
|
| 1391 |
+
parser.add_argument('-demo', '--demo_mode', action='store_true', help='Enable demo mode')
|
| 1392 |
+
#parser.add_argument('--log_file', action=str, help='Where to save logfile (non-default)')
|
| 1393 |
+
args = parser.parse_args()
|
| 1394 |
+
|
| 1395 |
+
# Since this is running in HF....
|
| 1396 |
+
args.user_interface = True
|
| 1397 |
+
if args.user_interface:
|
| 1398 |
+
launch_ui(demo_mode=args.demo_mode)
|
| 1399 |
+
else:
|
| 1400 |
+
if not args.input_path:
|
| 1401 |
+
parser.print_help()
|
| 1402 |
+
sys.exit(1)
|
| 1403 |
+
|
| 1404 |
+
logging.basicConfig(level=getattr(logging, args.log_level), format='%(asctime)s - %(levelname)s - %(message)s')
|
| 1405 |
+
|
| 1406 |
+
logging.info('Starting the transcription and summarization process.')
|
| 1407 |
+
logging.info(f'Input path: {args.input_path}')
|
| 1408 |
+
logging.info(f'API Name: {args.api_name}')
|
| 1409 |
+
logging.debug(f'API Key: {args.api_key}') # ehhhhh
|
| 1410 |
+
logging.info(f'Number of speakers: {args.num_speakers}')
|
| 1411 |
+
logging.info(f'Whisper model: {args.whisper_model}')
|
| 1412 |
+
logging.info(f'Offset: {args.offset}')
|
| 1413 |
+
logging.info(f'VAD filter: {args.vad_filter}')
|
| 1414 |
+
logging.info(f'Log Level: {args.log_level}') #lol
|
| 1415 |
+
|
| 1416 |
+
if args.api_name and args.api_key:
|
| 1417 |
+
logging.info(f'API: {args.api_name}')
|
| 1418 |
+
logging.info('Summarization will be performed.')
|
| 1419 |
+
else:
|
| 1420 |
+
logging.info('No API specified. Summarization will not be performed.')
|
| 1421 |
+
|
| 1422 |
+
logging.debug("Platform check being performed...")
|
| 1423 |
+
platform_check()
|
| 1424 |
+
logging.debug("CUDA check being performed...")
|
| 1425 |
+
cuda_check()
|
| 1426 |
+
logging.debug("ffmpeg check being performed...")
|
| 1427 |
+
check_ffmpeg()
|
| 1428 |
+
|
| 1429 |
+
try:
|
| 1430 |
+
results = main(args.input_path, api_name=args.api_name, api_key=args.api_key, num_speakers=args.num_speakers, whisper_model=args.whisper_model, offset=args.offset, vad_filter=args.vad_filter, download_video_flag=args.video)
|
| 1431 |
+
logging.info('Transcription process completed.')
|
| 1432 |
+
except Exception as e:
|
| 1433 |
+
logging.error('An error occurred during the transcription process.')
|
| 1434 |
+
logging.error(str(e))
|
| 1435 |
+
sys.exit(1)
|
| 1436 |
+
|