Spaces:
Runtime error
Runtime error
Update App_Function_Libraries/Chunk_Lib.py
Browse files- App_Function_Libraries/Chunk_Lib.py +583 -467
App_Function_Libraries/Chunk_Lib.py
CHANGED
|
@@ -1,467 +1,583 @@
|
|
| 1 |
-
# Chunk_Lib.py
|
| 2 |
-
#########################################
|
| 3 |
-
# Chunking Library
|
| 4 |
-
# This library is used to perform chunking of input files.
|
| 5 |
-
# Currently, uses naive approaches. Nothing fancy.
|
| 6 |
-
#
|
| 7 |
-
####
|
| 8 |
-
# Import necessary libraries
|
| 9 |
-
import logging
|
| 10 |
-
import re
|
| 11 |
-
|
| 12 |
-
from typing import List, Optional, Tuple, Dict, Any
|
| 13 |
-
|
| 14 |
-
from openai import OpenAI
|
| 15 |
-
from tqdm import tqdm
|
| 16 |
-
#
|
| 17 |
-
# Import 3rd party
|
| 18 |
-
from transformers import GPT2Tokenizer
|
| 19 |
-
import nltk
|
| 20 |
-
from nltk.tokenize import sent_tokenize, word_tokenize
|
| 21 |
-
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 22 |
-
from sklearn.metrics.pairwise import cosine_similarity
|
| 23 |
-
#
|
| 24 |
-
# Import Local
|
| 25 |
-
from App_Function_Libraries.Tokenization_Methods_Lib import openai_tokenize
|
| 26 |
-
from App_Function_Libraries.Utils import load_comprehensive_config
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
#
|
| 30 |
-
#######################################################################################################################
|
| 31 |
-
# Function Definitions
|
| 32 |
-
#
|
| 33 |
-
|
| 34 |
-
# FIXME - Make sure it only downloads if it already exists, and does a check first.
|
| 35 |
-
# Ensure NLTK data is downloaded
|
| 36 |
-
def ntlk_prep():
|
| 37 |
-
nltk.download('punkt')
|
| 38 |
-
|
| 39 |
-
# Load GPT2 tokenizer
|
| 40 |
-
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
|
| 41 |
-
|
| 42 |
-
# Load Config file for API keys
|
| 43 |
-
config = load_comprehensive_config()
|
| 44 |
-
openai_api_key = config.get('API', 'openai_api_key', fallback=None)
|
| 45 |
-
|
| 46 |
-
def load_document(file_path):
|
| 47 |
-
with open(file_path, 'r') as file:
|
| 48 |
-
text = file.read()
|
| 49 |
-
return re.sub('\\s+', ' ', text).strip()
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
def improved_chunking_process(text: str, chunk_options: Dict[str, Any]) -> List[Dict[str, Any]]:
|
| 53 |
-
chunk_method = chunk_options.get('method', 'words')
|
| 54 |
-
max_chunk_size = chunk_options.get('max_size', 300)
|
| 55 |
-
overlap = chunk_options.get('overlap', 0)
|
| 56 |
-
language = chunk_options.get('language', 'english')
|
| 57 |
-
adaptive = chunk_options.get('adaptive', False)
|
| 58 |
-
multi_level = chunk_options.get('multi_level', False)
|
| 59 |
-
|
| 60 |
-
if adaptive:
|
| 61 |
-
max_chunk_size = adaptive_chunk_size(text, max_chunk_size)
|
| 62 |
-
|
| 63 |
-
if multi_level:
|
| 64 |
-
chunks = multi_level_chunking(text, chunk_method, max_chunk_size, overlap, language)
|
| 65 |
-
else:
|
| 66 |
-
if chunk_method == 'words':
|
| 67 |
-
chunks = chunk_text_by_words(text, max_chunk_size, overlap)
|
| 68 |
-
elif chunk_method == 'sentences':
|
| 69 |
-
chunks = chunk_text_by_sentences(text, max_chunk_size, overlap, language)
|
| 70 |
-
elif chunk_method == 'paragraphs':
|
| 71 |
-
chunks = chunk_text_by_paragraphs(text, max_chunk_size, overlap)
|
| 72 |
-
elif chunk_method == 'tokens':
|
| 73 |
-
chunks = chunk_text_by_tokens(text, max_chunk_size, overlap)
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
#
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
'
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
#
|
| 249 |
-
# print(
|
| 250 |
-
#
|
| 251 |
-
#
|
| 252 |
-
# print(
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
#
|
| 258 |
-
#
|
| 259 |
-
#
|
| 260 |
-
|
| 261 |
-
#
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
chunks
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
|
| 441 |
-
#
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
|
| 450 |
-
|
| 451 |
-
|
| 452 |
-
|
| 453 |
-
|
| 454 |
-
|
| 455 |
-
|
| 456 |
-
|
| 457 |
-
|
| 458 |
-
|
| 459 |
-
|
| 460 |
-
|
| 461 |
-
|
| 462 |
-
|
| 463 |
-
|
| 464 |
-
|
| 465 |
-
|
| 466 |
-
|
| 467 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Chunk_Lib.py
|
| 2 |
+
#########################################
|
| 3 |
+
# Chunking Library
|
| 4 |
+
# This library is used to perform chunking of input files.
|
| 5 |
+
# Currently, uses naive approaches. Nothing fancy.
|
| 6 |
+
#
|
| 7 |
+
####
|
| 8 |
+
# Import necessary libraries
|
| 9 |
+
import logging
|
| 10 |
+
import re
|
| 11 |
+
|
| 12 |
+
from typing import List, Optional, Tuple, Dict, Any
|
| 13 |
+
|
| 14 |
+
from openai import OpenAI
|
| 15 |
+
from tqdm import tqdm
|
| 16 |
+
#
|
| 17 |
+
# Import 3rd party
|
| 18 |
+
from transformers import GPT2Tokenizer
|
| 19 |
+
import nltk
|
| 20 |
+
from nltk.tokenize import sent_tokenize, word_tokenize
|
| 21 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 22 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
| 23 |
+
#
|
| 24 |
+
# Import Local
|
| 25 |
+
from App_Function_Libraries.Tokenization_Methods_Lib import openai_tokenize
|
| 26 |
+
from App_Function_Libraries.Utils import load_comprehensive_config
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
#
|
| 30 |
+
#######################################################################################################################
|
| 31 |
+
# Function Definitions
|
| 32 |
+
#
|
| 33 |
+
|
| 34 |
+
# FIXME - Make sure it only downloads if it already exists, and does a check first.
|
| 35 |
+
# Ensure NLTK data is downloaded
|
| 36 |
+
def ntlk_prep():
|
| 37 |
+
nltk.download('punkt')
|
| 38 |
+
|
| 39 |
+
# Load GPT2 tokenizer
|
| 40 |
+
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
|
| 41 |
+
|
| 42 |
+
# Load Config file for API keys
|
| 43 |
+
config = load_comprehensive_config()
|
| 44 |
+
openai_api_key = config.get('API', 'openai_api_key', fallback=None)
|
| 45 |
+
|
| 46 |
+
def load_document(file_path):
|
| 47 |
+
with open(file_path, 'r') as file:
|
| 48 |
+
text = file.read()
|
| 49 |
+
return re.sub('\\s+', ' ', text).strip()
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def improved_chunking_process(text: str, chunk_options: Dict[str, Any]) -> List[Dict[str, Any]]:
|
| 53 |
+
chunk_method = chunk_options.get('method', 'words')
|
| 54 |
+
max_chunk_size = chunk_options.get('max_size', 300)
|
| 55 |
+
overlap = chunk_options.get('overlap', 0)
|
| 56 |
+
language = chunk_options.get('language', 'english')
|
| 57 |
+
adaptive = chunk_options.get('adaptive', False)
|
| 58 |
+
multi_level = chunk_options.get('multi_level', False)
|
| 59 |
+
|
| 60 |
+
if adaptive:
|
| 61 |
+
max_chunk_size = adaptive_chunk_size(text, max_chunk_size)
|
| 62 |
+
|
| 63 |
+
if multi_level:
|
| 64 |
+
chunks = multi_level_chunking(text, chunk_method, max_chunk_size, overlap, language)
|
| 65 |
+
else:
|
| 66 |
+
if chunk_method == 'words':
|
| 67 |
+
chunks = chunk_text_by_words(text, max_chunk_size, overlap)
|
| 68 |
+
elif chunk_method == 'sentences':
|
| 69 |
+
chunks = chunk_text_by_sentences(text, max_chunk_size, overlap, language)
|
| 70 |
+
elif chunk_method == 'paragraphs':
|
| 71 |
+
chunks = chunk_text_by_paragraphs(text, max_chunk_size, overlap)
|
| 72 |
+
elif chunk_method == 'tokens':
|
| 73 |
+
chunks = chunk_text_by_tokens(text, max_chunk_size, overlap)
|
| 74 |
+
elif chunk_method == 'chapters':
|
| 75 |
+
return chunk_ebook_by_chapters(text, chunk_options)
|
| 76 |
+
else:
|
| 77 |
+
# No chunking applied
|
| 78 |
+
chunks = [text]
|
| 79 |
+
|
| 80 |
+
return [{'text': chunk, 'metadata': get_chunk_metadata(chunk, text)} for chunk in chunks]
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def adaptive_chunk_size(text: str, base_size: int) -> int:
|
| 84 |
+
# Simple adaptive logic: adjust chunk size based on text complexity
|
| 85 |
+
avg_word_length = sum(len(word) for word in text.split()) / len(text.split())
|
| 86 |
+
if avg_word_length > 6: # Arbitrary threshold for "complex" text
|
| 87 |
+
return int(base_size * 0.8) # Reduce chunk size for complex text
|
| 88 |
+
return base_size
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def multi_level_chunking(text: str, method: str, max_size: int, overlap: int, language: str) -> List[str]:
|
| 92 |
+
# First level: chunk by paragraphs
|
| 93 |
+
paragraphs = chunk_text_by_paragraphs(text, max_size * 2, overlap)
|
| 94 |
+
|
| 95 |
+
# Second level: chunk each paragraph further
|
| 96 |
+
chunks = []
|
| 97 |
+
for para in paragraphs:
|
| 98 |
+
if method == 'words':
|
| 99 |
+
chunks.extend(chunk_text_by_words(para, max_size, overlap))
|
| 100 |
+
elif method == 'sentences':
|
| 101 |
+
chunks.extend(chunk_text_by_sentences(para, max_size, overlap, language))
|
| 102 |
+
else:
|
| 103 |
+
chunks.append(para)
|
| 104 |
+
|
| 105 |
+
return chunks
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
def chunk_text_by_words(text: str, max_words: int = 300, overlap: int = 0) -> List[str]:
|
| 109 |
+
words = text.split()
|
| 110 |
+
chunks = []
|
| 111 |
+
for i in range(0, len(words), max_words - overlap):
|
| 112 |
+
chunk = ' '.join(words[i:i + max_words])
|
| 113 |
+
chunks.append(chunk)
|
| 114 |
+
return post_process_chunks(chunks)
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
def chunk_text_by_sentences(text: str, max_sentences: int = 10, overlap: int = 0, language: str = 'english') -> List[
|
| 118 |
+
str]:
|
| 119 |
+
nltk.download('punkt', quiet=True)
|
| 120 |
+
sentences = nltk.sent_tokenize(text, language=language)
|
| 121 |
+
chunks = []
|
| 122 |
+
for i in range(0, len(sentences), max_sentences - overlap):
|
| 123 |
+
chunk = ' '.join(sentences[i:i + max_sentences])
|
| 124 |
+
chunks.append(chunk)
|
| 125 |
+
return post_process_chunks(chunks)
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
def chunk_text_by_paragraphs(text: str, max_paragraphs: int = 5, overlap: int = 0) -> List[str]:
|
| 129 |
+
paragraphs = re.split(r'\n\s*\n', text)
|
| 130 |
+
chunks = []
|
| 131 |
+
for i in range(0, len(paragraphs), max_paragraphs - overlap):
|
| 132 |
+
chunk = '\n\n'.join(paragraphs[i:i + max_paragraphs])
|
| 133 |
+
chunks.append(chunk)
|
| 134 |
+
return post_process_chunks(chunks)
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
def chunk_text_by_tokens(text: str, max_tokens: int = 1000, overlap: int = 0) -> List[str]:
|
| 138 |
+
# This is a simplified token-based chunking. For more accurate tokenization,
|
| 139 |
+
# consider using a proper tokenizer like GPT-2 TokenizerFast
|
| 140 |
+
words = text.split()
|
| 141 |
+
chunks = []
|
| 142 |
+
current_chunk = []
|
| 143 |
+
current_token_count = 0
|
| 144 |
+
|
| 145 |
+
for word in words:
|
| 146 |
+
word_token_count = len(word) // 4 + 1 # Rough estimate of token count
|
| 147 |
+
if current_token_count + word_token_count > max_tokens and current_chunk:
|
| 148 |
+
chunks.append(' '.join(current_chunk))
|
| 149 |
+
current_chunk = current_chunk[-overlap:] if overlap > 0 else []
|
| 150 |
+
current_token_count = sum(len(w) // 4 + 1 for w in current_chunk)
|
| 151 |
+
|
| 152 |
+
current_chunk.append(word)
|
| 153 |
+
current_token_count += word_token_count
|
| 154 |
+
|
| 155 |
+
if current_chunk:
|
| 156 |
+
chunks.append(' '.join(current_chunk))
|
| 157 |
+
|
| 158 |
+
return post_process_chunks(chunks)
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
def post_process_chunks(chunks: List[str]) -> List[str]:
|
| 162 |
+
return [chunk.strip() for chunk in chunks if chunk.strip()]
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
def get_chunk_metadata(chunk: str, full_text: str, chunk_type: str = "generic", chapter_number: Optional[int] = None, chapter_pattern: Optional[str] = None) -> Dict[str, Any]:
|
| 166 |
+
start_index = full_text.index(chunk)
|
| 167 |
+
metadata = {
|
| 168 |
+
'start_index': start_index,
|
| 169 |
+
'end_index': start_index + len(chunk),
|
| 170 |
+
'word_count': len(chunk.split()),
|
| 171 |
+
'char_count': len(chunk),
|
| 172 |
+
'chunk_type': chunk_type
|
| 173 |
+
}
|
| 174 |
+
if chunk_type == "chapter":
|
| 175 |
+
metadata['chapter_number'] = chapter_number
|
| 176 |
+
metadata['chapter_pattern'] = chapter_pattern
|
| 177 |
+
return metadata
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
# Hybrid approach, chunk each sentence while ensuring total token size does not exceed a maximum number
|
| 181 |
+
def chunk_text_hybrid(text, max_tokens=1000):
|
| 182 |
+
sentences = nltk.tokenize.sent_tokenize(text)
|
| 183 |
+
chunks = []
|
| 184 |
+
current_chunk = []
|
| 185 |
+
current_length = 0
|
| 186 |
+
|
| 187 |
+
for sentence in sentences:
|
| 188 |
+
tokens = tokenizer.encode(sentence)
|
| 189 |
+
if current_length + len(tokens) <= max_tokens:
|
| 190 |
+
current_chunk.append(sentence)
|
| 191 |
+
current_length += len(tokens)
|
| 192 |
+
else:
|
| 193 |
+
chunks.append(' '.join(current_chunk))
|
| 194 |
+
current_chunk = [sentence]
|
| 195 |
+
current_length = len(tokens)
|
| 196 |
+
|
| 197 |
+
if current_chunk:
|
| 198 |
+
chunks.append(' '.join(current_chunk))
|
| 199 |
+
|
| 200 |
+
return chunks
|
| 201 |
+
|
| 202 |
+
# Thanks openai
|
| 203 |
+
def chunk_on_delimiter(input_string: str,
|
| 204 |
+
max_tokens: int,
|
| 205 |
+
delimiter: str) -> List[str]:
|
| 206 |
+
chunks = input_string.split(delimiter)
|
| 207 |
+
combined_chunks, _, dropped_chunk_count = combine_chunks_with_no_minimum(
|
| 208 |
+
chunks, max_tokens, chunk_delimiter=delimiter, add_ellipsis_for_overflow=True)
|
| 209 |
+
if dropped_chunk_count > 0:
|
| 210 |
+
print(f"Warning: {dropped_chunk_count} chunks were dropped due to exceeding the token limit.")
|
| 211 |
+
combined_chunks = [f"{chunk}{delimiter}" for chunk in combined_chunks]
|
| 212 |
+
return combined_chunks
|
| 213 |
+
|
| 214 |
+
# ????FIXME
|
| 215 |
+
def recursive_summarize_chunks(chunks, summarize_func, custom_prompt, temp=None, system_prompt=None):
|
| 216 |
+
summarized_chunks = []
|
| 217 |
+
current_summary = ""
|
| 218 |
+
|
| 219 |
+
logging.debug(f"recursive_summarize_chunks: Summarizing {len(chunks)} chunks recursively...")
|
| 220 |
+
logging.debug(f"recursive_summarize_chunks: temperature is @ {temp}")
|
| 221 |
+
for i, chunk in enumerate(chunks):
|
| 222 |
+
if i == 0:
|
| 223 |
+
current_summary = summarize_func(chunk, custom_prompt, temp, system_prompt)
|
| 224 |
+
else:
|
| 225 |
+
combined_text = current_summary + "\n\n" + chunk
|
| 226 |
+
current_summary = summarize_func(combined_text, custom_prompt, temp, system_prompt)
|
| 227 |
+
|
| 228 |
+
summarized_chunks.append(current_summary)
|
| 229 |
+
|
| 230 |
+
return summarized_chunks
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
# Sample text for testing
|
| 234 |
+
sample_text = """
|
| 235 |
+
Natural language processing (NLP) is a subfield of linguistics, computer science, and artificial intelligence
|
| 236 |
+
concerned with the interactions between computers and human language, in particular how to program computers
|
| 237 |
+
to process and analyze large amounts of natural language data. The result is a computer capable of "understanding"
|
| 238 |
+
the contents of documents, including the contextual nuances of the language within them. The technology can then
|
| 239 |
+
accurately extract information and insights contained in the documents as well as categorize and organize the documents themselves.
|
| 240 |
+
|
| 241 |
+
Challenges in natural language processing frequently involve speech recognition, natural language understanding,
|
| 242 |
+
and natural language generation.
|
| 243 |
+
|
| 244 |
+
Natural language processing has its roots in the 1950s. Already in 1950, Alan Turing published an article titled
|
| 245 |
+
"Computing Machinery and Intelligence" which proposed what is now called the Turing test as a criterion of intelligence.
|
| 246 |
+
"""
|
| 247 |
+
|
| 248 |
+
# Example usage of different chunking methods
|
| 249 |
+
# print("Chunking by words:")
|
| 250 |
+
# print(chunk_text_by_words(sample_text, max_words=50))
|
| 251 |
+
#
|
| 252 |
+
# print("\nChunking by sentences:")
|
| 253 |
+
# print(chunk_text_by_sentences(sample_text, max_sentences=2))
|
| 254 |
+
#
|
| 255 |
+
# print("\nChunking by paragraphs:")
|
| 256 |
+
# print(chunk_text_by_paragraphs(sample_text, max_paragraphs=1))
|
| 257 |
+
#
|
| 258 |
+
# print("\nChunking by tokens:")
|
| 259 |
+
# print(chunk_text_by_tokens(sample_text, max_tokens=50))
|
| 260 |
+
#
|
| 261 |
+
# print("\nHybrid chunking:")
|
| 262 |
+
# print(chunk_text_hybrid(sample_text, max_tokens=50))
|
| 263 |
+
|
| 264 |
+
|
| 265 |
+
|
| 266 |
+
#######################################################################################################################
|
| 267 |
+
#
|
| 268 |
+
# Experimental Semantic Chunking
|
| 269 |
+
#
|
| 270 |
+
|
| 271 |
+
# Chunk text into segments based on semantic similarity
|
| 272 |
+
def count_units(text, unit='tokens'):
|
| 273 |
+
if unit == 'words':
|
| 274 |
+
return len(text.split())
|
| 275 |
+
elif unit == 'tokens':
|
| 276 |
+
return len(word_tokenize(text))
|
| 277 |
+
elif unit == 'characters':
|
| 278 |
+
return len(text)
|
| 279 |
+
else:
|
| 280 |
+
raise ValueError("Invalid unit. Choose 'words', 'tokens', or 'characters'.")
|
| 281 |
+
|
| 282 |
+
|
| 283 |
+
def semantic_chunking(text, max_chunk_size=2000, unit='words'):
|
| 284 |
+
nltk.download('punkt', quiet=True)
|
| 285 |
+
sentences = sent_tokenize(text)
|
| 286 |
+
vectorizer = TfidfVectorizer()
|
| 287 |
+
sentence_vectors = vectorizer.fit_transform(sentences)
|
| 288 |
+
|
| 289 |
+
chunks = []
|
| 290 |
+
current_chunk = []
|
| 291 |
+
current_size = 0
|
| 292 |
+
|
| 293 |
+
for i, sentence in enumerate(sentences):
|
| 294 |
+
sentence_size = count_units(sentence, unit)
|
| 295 |
+
if current_size + sentence_size > max_chunk_size and current_chunk:
|
| 296 |
+
chunks.append(' '.join(current_chunk))
|
| 297 |
+
overlap_size = count_units(' '.join(current_chunk[-3:]), unit) # Use last 3 sentences for overlap
|
| 298 |
+
current_chunk = current_chunk[-3:] # Keep last 3 sentences for overlap
|
| 299 |
+
current_size = overlap_size
|
| 300 |
+
|
| 301 |
+
current_chunk.append(sentence)
|
| 302 |
+
current_size += sentence_size
|
| 303 |
+
|
| 304 |
+
if i + 1 < len(sentences):
|
| 305 |
+
current_vector = sentence_vectors[i]
|
| 306 |
+
next_vector = sentence_vectors[i + 1]
|
| 307 |
+
similarity = cosine_similarity(current_vector, next_vector)[0][0]
|
| 308 |
+
if similarity < 0.5 and current_size >= max_chunk_size // 2:
|
| 309 |
+
chunks.append(' '.join(current_chunk))
|
| 310 |
+
overlap_size = count_units(' '.join(current_chunk[-3:]), unit)
|
| 311 |
+
current_chunk = current_chunk[-3:]
|
| 312 |
+
current_size = overlap_size
|
| 313 |
+
|
| 314 |
+
if current_chunk:
|
| 315 |
+
chunks.append(' '.join(current_chunk))
|
| 316 |
+
|
| 317 |
+
return chunks
|
| 318 |
+
|
| 319 |
+
|
| 320 |
+
def semantic_chunk_long_file(file_path, max_chunk_size=1000, overlap=100):
|
| 321 |
+
try:
|
| 322 |
+
with open(file_path, 'r', encoding='utf-8') as file:
|
| 323 |
+
content = file.read()
|
| 324 |
+
|
| 325 |
+
chunks = semantic_chunking(content, max_chunk_size, overlap)
|
| 326 |
+
return chunks
|
| 327 |
+
except Exception as e:
|
| 328 |
+
logging.error(f"Error chunking text file: {str(e)}")
|
| 329 |
+
return None
|
| 330 |
+
#######################################################################################################################
|
| 331 |
+
|
| 332 |
+
|
| 333 |
+
|
| 334 |
+
|
| 335 |
+
|
| 336 |
+
|
| 337 |
+
#######################################################################################################################
|
| 338 |
+
#
|
| 339 |
+
# OpenAI Rolling Summarization
|
| 340 |
+
#
|
| 341 |
+
|
| 342 |
+
client = OpenAI(api_key=openai_api_key)
|
| 343 |
+
def get_chat_completion(messages, model='gpt-4-turbo'):
|
| 344 |
+
response = client.chat.completions.create(
|
| 345 |
+
model=model,
|
| 346 |
+
messages=messages,
|
| 347 |
+
temperature=0,
|
| 348 |
+
)
|
| 349 |
+
return response.choices[0].message.content
|
| 350 |
+
|
| 351 |
+
|
| 352 |
+
# This function combines text chunks into larger blocks without exceeding a specified token count.
|
| 353 |
+
# It returns the combined chunks, their original indices, and the number of dropped chunks due to overflow.
|
| 354 |
+
def combine_chunks_with_no_minimum(
|
| 355 |
+
chunks: List[str],
|
| 356 |
+
max_tokens: int,
|
| 357 |
+
chunk_delimiter="\n\n",
|
| 358 |
+
header: Optional[str] = None,
|
| 359 |
+
add_ellipsis_for_overflow=False,
|
| 360 |
+
) -> Tuple[List[str], List[int]]:
|
| 361 |
+
dropped_chunk_count = 0
|
| 362 |
+
output = [] # list to hold the final combined chunks
|
| 363 |
+
output_indices = [] # list to hold the indices of the final combined chunks
|
| 364 |
+
candidate = (
|
| 365 |
+
[] if header is None else [header]
|
| 366 |
+
) # list to hold the current combined chunk candidate
|
| 367 |
+
candidate_indices = []
|
| 368 |
+
for chunk_i, chunk in enumerate(chunks):
|
| 369 |
+
chunk_with_header = [chunk] if header is None else [header, chunk]
|
| 370 |
+
# FIXME MAKE NOT OPENAI SPECIFIC
|
| 371 |
+
if len(openai_tokenize(chunk_delimiter.join(chunk_with_header))) > max_tokens:
|
| 372 |
+
print(f"warning: chunk overflow")
|
| 373 |
+
if (
|
| 374 |
+
add_ellipsis_for_overflow
|
| 375 |
+
# FIXME MAKE NOT OPENAI SPECIFIC
|
| 376 |
+
and len(openai_tokenize(chunk_delimiter.join(candidate + ["..."]))) <= max_tokens
|
| 377 |
+
):
|
| 378 |
+
candidate.append("...")
|
| 379 |
+
dropped_chunk_count += 1
|
| 380 |
+
continue # this case would break downstream assumptions
|
| 381 |
+
# estimate token count with the current chunk added
|
| 382 |
+
# FIXME MAKE NOT OPENAI SPECIFIC
|
| 383 |
+
extended_candidate_token_count = len(openai_tokenize(chunk_delimiter.join(candidate + [chunk])))
|
| 384 |
+
# If the token count exceeds max_tokens, add the current candidate to output and start a new candidate
|
| 385 |
+
if extended_candidate_token_count > max_tokens:
|
| 386 |
+
output.append(chunk_delimiter.join(candidate))
|
| 387 |
+
output_indices.append(candidate_indices)
|
| 388 |
+
candidate = chunk_with_header # re-initialize candidate
|
| 389 |
+
candidate_indices = [chunk_i]
|
| 390 |
+
# otherwise keep extending the candidate
|
| 391 |
+
else:
|
| 392 |
+
candidate.append(chunk)
|
| 393 |
+
candidate_indices.append(chunk_i)
|
| 394 |
+
# add the remaining candidate to output if it's not empty
|
| 395 |
+
if (header is not None and len(candidate) > 1) or (header is None and len(candidate) > 0):
|
| 396 |
+
output.append(chunk_delimiter.join(candidate))
|
| 397 |
+
output_indices.append(candidate_indices)
|
| 398 |
+
return output, output_indices, dropped_chunk_count
|
| 399 |
+
|
| 400 |
+
|
| 401 |
+
def rolling_summarize(text: str,
|
| 402 |
+
detail: float = 0,
|
| 403 |
+
model: str = 'gpt-4-turbo',
|
| 404 |
+
additional_instructions: Optional[str] = None,
|
| 405 |
+
minimum_chunk_size: Optional[int] = 500,
|
| 406 |
+
chunk_delimiter: str = ".",
|
| 407 |
+
summarize_recursively=False,
|
| 408 |
+
verbose=False):
|
| 409 |
+
"""
|
| 410 |
+
Summarizes a given text by splitting it into chunks, each of which is summarized individually.
|
| 411 |
+
The level of detail in the summary can be adjusted, and the process can optionally be made recursive.
|
| 412 |
+
|
| 413 |
+
Parameters:
|
| 414 |
+
- text (str): The text to be summarized.
|
| 415 |
+
- detail (float, optional): A value between 0 and 1
|
| 416 |
+
indicating the desired level of detail in the summary. 0 leads to a higher level summary, and 1 results in a more
|
| 417 |
+
detailed summary. Defaults to 0.
|
| 418 |
+
- additional_instructions (Optional[str], optional): Additional instructions to provide to the
|
| 419 |
+
model for customizing summaries. - minimum_chunk_size (Optional[int], optional): The minimum size for text
|
| 420 |
+
chunks. Defaults to 500.
|
| 421 |
+
- chunk_delimiter (str, optional): The delimiter used to split the text into chunks. Defaults to ".".
|
| 422 |
+
- summarize_recursively (bool, optional): If True, summaries are generated recursively, using previous summaries for context.
|
| 423 |
+
- verbose (bool, optional): If True, prints detailed information about the chunking process.
|
| 424 |
+
Returns:
|
| 425 |
+
- str: The final compiled summary of the text.
|
| 426 |
+
|
| 427 |
+
The function first determines the number of chunks by interpolating between a minimum and a maximum chunk count
|
| 428 |
+
based on the `detail` parameter. It then splits the text into chunks and summarizes each chunk. If
|
| 429 |
+
`summarize_recursively` is True, each summary is based on the previous summaries, adding more context to the
|
| 430 |
+
summarization process. The function returns a compiled summary of all chunks.
|
| 431 |
+
"""
|
| 432 |
+
|
| 433 |
+
# check detail is set correctly
|
| 434 |
+
assert 0 <= detail <= 1
|
| 435 |
+
|
| 436 |
+
# interpolate the number of chunks based to get specified level of detail
|
| 437 |
+
max_chunks = len(chunk_on_delimiter(text, minimum_chunk_size, chunk_delimiter))
|
| 438 |
+
min_chunks = 1
|
| 439 |
+
num_chunks = int(min_chunks + detail * (max_chunks - min_chunks))
|
| 440 |
+
|
| 441 |
+
# adjust chunk_size based on interpolated number of chunks
|
| 442 |
+
# FIXME MAKE NOT OPENAI SPECIFIC
|
| 443 |
+
document_length = len(openai_tokenize(text))
|
| 444 |
+
chunk_size = max(minimum_chunk_size, document_length // num_chunks)
|
| 445 |
+
text_chunks = chunk_on_delimiter(text, chunk_size, chunk_delimiter)
|
| 446 |
+
if verbose:
|
| 447 |
+
print(f"Splitting the text into {len(text_chunks)} chunks to be summarized.")
|
| 448 |
+
# FIXME MAKE NOT OPENAI SPECIFIC
|
| 449 |
+
print(f"Chunk lengths are {[len(openai_tokenize(x)) for x in text_chunks]}")
|
| 450 |
+
|
| 451 |
+
# set system message - FIXME
|
| 452 |
+
system_message_content = "Rewrite this text in summarized form."
|
| 453 |
+
if additional_instructions is not None:
|
| 454 |
+
system_message_content += f"\n\n{additional_instructions}"
|
| 455 |
+
|
| 456 |
+
accumulated_summaries = []
|
| 457 |
+
for i, chunk in enumerate(tqdm(text_chunks)):
|
| 458 |
+
if summarize_recursively and accumulated_summaries:
|
| 459 |
+
# Combine previous summary with current chunk for recursive summarization
|
| 460 |
+
combined_text = accumulated_summaries[-1] + "\n\n" + chunk
|
| 461 |
+
user_message_content = f"Previous summary and new content to summarize:\n\n{combined_text}"
|
| 462 |
+
else:
|
| 463 |
+
user_message_content = chunk
|
| 464 |
+
|
| 465 |
+
messages = [
|
| 466 |
+
{"role": "system", "content": system_message_content},
|
| 467 |
+
{"role": "user", "content": user_message_content}
|
| 468 |
+
]
|
| 469 |
+
|
| 470 |
+
response = get_chat_completion(messages, model=model)
|
| 471 |
+
accumulated_summaries.append(response)
|
| 472 |
+
|
| 473 |
+
final_summary = '\n\n'.join(accumulated_summaries)
|
| 474 |
+
return final_summary
|
| 475 |
+
|
| 476 |
+
#
|
| 477 |
+
#
|
| 478 |
+
#######################################################################################################################
|
| 479 |
+
#
|
| 480 |
+
# Ebook Chapter Chunking
|
| 481 |
+
|
| 482 |
+
|
| 483 |
+
def chunk_ebook_by_chapters(text: str, chunk_options: Dict[str, Any]) -> List[Dict[str, Any]]:
|
| 484 |
+
max_chunk_size = chunk_options.get('max_size', 300)
|
| 485 |
+
overlap = chunk_options.get('overlap', 0)
|
| 486 |
+
custom_pattern = chunk_options.get('custom_chapter_pattern', None)
|
| 487 |
+
|
| 488 |
+
# List of chapter heading patterns to try, in order
|
| 489 |
+
chapter_patterns = [
|
| 490 |
+
custom_pattern,
|
| 491 |
+
r'^#{1,2}\s+', # Markdown style: '# ' or '## '
|
| 492 |
+
r'^Chapter\s+\d+', # 'Chapter ' followed by numbers
|
| 493 |
+
r'^\d+\.\s+', # Numbered chapters: '1. ', '2. ', etc.
|
| 494 |
+
r'^[A-Z\s]+$' # All caps headings
|
| 495 |
+
]
|
| 496 |
+
|
| 497 |
+
chapter_positions = []
|
| 498 |
+
used_pattern = None
|
| 499 |
+
|
| 500 |
+
for pattern in chapter_patterns:
|
| 501 |
+
if pattern is None:
|
| 502 |
+
continue
|
| 503 |
+
chapter_regex = re.compile(pattern, re.MULTILINE | re.IGNORECASE)
|
| 504 |
+
chapter_positions = [match.start() for match in chapter_regex.finditer(text)]
|
| 505 |
+
if chapter_positions:
|
| 506 |
+
used_pattern = pattern
|
| 507 |
+
break
|
| 508 |
+
|
| 509 |
+
# If no chapters found, return the entire content as one chunk
|
| 510 |
+
if not chapter_positions:
|
| 511 |
+
return [{'text': text, 'metadata': get_chunk_metadata(text, text, chunk_type="whole_document")}]
|
| 512 |
+
|
| 513 |
+
# Split content into chapters
|
| 514 |
+
chunks = []
|
| 515 |
+
for i in range(len(chapter_positions)):
|
| 516 |
+
start = chapter_positions[i]
|
| 517 |
+
end = chapter_positions[i + 1] if i + 1 < len(chapter_positions) else None
|
| 518 |
+
chapter = text[start:end]
|
| 519 |
+
|
| 520 |
+
# Apply overlap if specified
|
| 521 |
+
if overlap > 0 and i > 0:
|
| 522 |
+
overlap_start = max(0, start - overlap)
|
| 523 |
+
chapter = text[overlap_start:end]
|
| 524 |
+
|
| 525 |
+
chunks.append(chapter)
|
| 526 |
+
|
| 527 |
+
# Post-process chunks
|
| 528 |
+
processed_chunks = post_process_chunks(chunks)
|
| 529 |
+
|
| 530 |
+
# Add metadata to chunks
|
| 531 |
+
return [{'text': chunk, 'metadata': get_chunk_metadata(chunk, text, chunk_type="chapter", chapter_number=i + 1,
|
| 532 |
+
chapter_pattern=used_pattern)}
|
| 533 |
+
for i, chunk in enumerate(processed_chunks)]
|
| 534 |
+
|
| 535 |
+
|
| 536 |
+
# # Example usage
|
| 537 |
+
# if __name__ == "__main__":
|
| 538 |
+
# sample_ebook_content = """
|
| 539 |
+
# # Chapter 1: Introduction
|
| 540 |
+
#
|
| 541 |
+
# This is the introduction.
|
| 542 |
+
#
|
| 543 |
+
# ## Section 1.1
|
| 544 |
+
#
|
| 545 |
+
# Some content here.
|
| 546 |
+
#
|
| 547 |
+
# # Chapter 2: Main Content
|
| 548 |
+
#
|
| 549 |
+
# This is the main content.
|
| 550 |
+
#
|
| 551 |
+
# ## Section 2.1
|
| 552 |
+
#
|
| 553 |
+
# More content here.
|
| 554 |
+
#
|
| 555 |
+
# CHAPTER THREE
|
| 556 |
+
#
|
| 557 |
+
# This is the third chapter.
|
| 558 |
+
#
|
| 559 |
+
# 4. Fourth Chapter
|
| 560 |
+
#
|
| 561 |
+
# This is the fourth chapter.
|
| 562 |
+
# """
|
| 563 |
+
#
|
| 564 |
+
# chunk_options = {
|
| 565 |
+
# 'method': 'chapters',
|
| 566 |
+
# 'max_size': 500,
|
| 567 |
+
# 'overlap': 50,
|
| 568 |
+
# 'custom_chapter_pattern': r'^CHAPTER\s+[A-Z]+' # Custom pattern for 'CHAPTER THREE' style
|
| 569 |
+
# }
|
| 570 |
+
#
|
| 571 |
+
# chunked_chapters = improved_chunking_process(sample_ebook_content, chunk_options)
|
| 572 |
+
#
|
| 573 |
+
# for i, chunk in enumerate(chunked_chapters, 1):
|
| 574 |
+
# print(f"Chunk {i}:")
|
| 575 |
+
# print(chunk['text'])
|
| 576 |
+
# print(f"Metadata: {chunk['metadata']}\n")
|
| 577 |
+
|
| 578 |
+
|
| 579 |
+
|
| 580 |
+
|
| 581 |
+
#
|
| 582 |
+
# End of Chunking Library
|
| 583 |
+
#######################################################################################################################
|