File size: 25,627 Bytes
e884643
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
"""
Gemini-based Knowledge Graph Extraction
Simple LLM-powered extraction using Google Gemini (cheapest option)
"""
from typing import List, Dict, Any, Optional
from loguru import logger
from models import Chunk, CanonicalTriple, RelationType
from config import settings
import json
import asyncio


class GeminiExtractor:
    """
    Extract key nodes and relationships using Gemini LLM
    Simple, cost-effective approach for knowledge graph generation
    """

    def __init__(self, llm_service=None):
        """Initialize Gemini extractor"""
        logger.info("Initializing GeminiExtractor")

        # Import litellm for API calls
        try:
            import litellm
            self.litellm = litellm

            # Configure litellm for Gemini
            self.model_name = f"gemini/{settings.gemini_model}"
            self.api_key = settings.gemini_api_key

            logger.info(f"βœ“ GeminiExtractor initialized with model: {self.model_name}")

        except ImportError as e:
            logger.error("litellm not installed. Install with: pip install litellm")
            raise RuntimeError("litellm required for Gemini") from e

        # Comprehensive list of generic terms to REJECT
        self.generic_stopwords = {
            # Generic nouns
            'system', 'systems', 'data', 'information', 'value', 'values',
            'method', 'methods', 'approach', 'approaches', 'technique', 'techniques',
            'result', 'results', 'study', 'studies', 'paper', 'papers',
            'section', 'sections', 'figure', 'figures', 'table', 'tables',
            'example', 'examples', 'case', 'cases', 'type', 'types',
            'way', 'ways', 'thing', 'things', 'part', 'parts',
            'model', 'models', 'framework', 'frameworks',  # Too generic unless specific
            'process', 'processes', 'analysis', 'problem', 'problems',
            'solution', 'solutions', 'set', 'sets', 'group', 'groups',
            'element', 'elements', 'component', 'components',
            'feature', 'features', 'property', 'properties',
            'aspect', 'aspects', 'factor', 'factors', 'parameter', 'parameters',
            'concept', 'concepts', 'idea', 'ideas', 'theory', 'theories',
            'field', 'fields', 'area', 'areas', 'domain', 'domains',
            'task', 'tasks', 'goal', 'goals', 'objective', 'objectives',
            'input', 'inputs', 'output', 'outputs', 'function', 'functions',
            'operation', 'operations', 'step', 'steps', 'stage', 'stages',
            'phase', 'phases', 'level', 'levels', 'layer', 'layers',
            'number', 'numbers', 'amount', 'amounts', 'size', 'sizes',
            'performance', 'accuracy', 'quality', 'efficiency',
            'document', 'documents', 'text', 'texts', 'word', 'words',
            'sentence', 'sentences', 'paragraph', 'paragraphs',
            'item', 'items', 'object', 'objects', 'entity', 'entities',
            'relation', 'relations', 'relationship', 'relationships',

            # Generic verbs/actions
            'use', 'uses', 'using', 'used', 'usage',
            'apply', 'applies', 'applying', 'applied', 'application', 'applications',
            'work', 'works', 'working', 'worked',
            'provide', 'provides', 'providing', 'provided',
            'show', 'shows', 'showing', 'shown',
            'present', 'presents', 'presenting', 'presented', 'presentation',

            # Generic adjectives
            'new', 'novel', 'existing', 'current', 'previous',
            'different', 'similar', 'same', 'other', 'another',
            'various', 'several', 'multiple', 'single',
            'important', 'significant', 'main', 'key', 'major',
            'good', 'better', 'best', 'high', 'low',
            'large', 'small', 'big', 'little',

            # Research-specific generic terms
            'experiment', 'experiments', 'evaluation', 'evaluations',
            'test', 'tests', 'testing', 'validation',
            'comparison', 'comparisons', 'benchmark', 'benchmarks',
            'baseline', 'baselines', 'metric', 'metrics',
            'dataset', 'datasets', 'corpus', 'corpora',

            # Time/sequence terms
            'time', 'times', 'period', 'periods', 'year', 'years',
            'first', 'second', 'third', 'last', 'final',
            'next', 'previous', 'current', 'recent',

            # Common prepositions/articles (shouldn't appear but just in case)
            'the', 'a', 'an', 'in', 'on', 'at', 'to', 'for', 'of', 'with', 'by',

            # Additional generic ML/AI terms (too broad)
            'neural network', 'deep learning', 'machine learning',
            'training', 'testing', 'prediction', 'classification',
            'regression', 'clustering', 'optimization',
            'network', 'networks', 'algorithm', 'algorithms',
            'learning', 'training data', 'test data',
            'feature extraction', 'preprocessing',
            'hyperparameter', 'hyperparameters',
            'loss', 'error', 'gradient',
        }

    async def extract_from_chunks(
        self,
        chunks: List[Chunk],
        use_llm: bool = True
    ) -> List[CanonicalTriple]:
        """
        Extract knowledge graph - PER PAGE with HARD CAP of 2 concepts per page

        Args:
            chunks: List of text chunks
            use_llm: Always True for Gemini extraction

        Returns:
            List of canonical triples
        """
        logger.info(f"\n{'='*80}")
        logger.info(f"{'GEMINI PER-PAGE EXTRACTION - 2 CONCEPTS MAX PER PAGE':^80}")
        logger.info(f"{'='*80}")

        all_triples = []

        # Filter text chunks
        text_chunks = [c for c in chunks if c.type.value in ["paragraph", "code"]]

        if not text_chunks:
            logger.warning("No text chunks to process")
            return []

        # GROUP CHUNKS BY PAGE
        from collections import defaultdict
        chunks_by_page = defaultdict(list)
        for chunk in text_chunks:
            page_num = chunk.page_number or 0
            chunks_by_page[page_num].append(chunk)

        logger.info(f"Processing {len(chunks_by_page)} pages in PARALLEL")

        # ⚑ PARALLEL PROCESSING: Create tasks for all pages
        tasks = []
        page_numbers = []
        for page_num in sorted(chunks_by_page.keys()):
            page_chunks = chunks_by_page[page_num]
            combined_text = "\n\n".join([chunk.text for chunk in page_chunks])

            logger.info(f"πŸ“„ PAGE {page_num}: {len(page_chunks)} chunks, {len(combined_text)} chars")

            # Create async task for this page
            tasks.append(self._extract_with_gemini(combined_text, page_num))
            page_numbers.append(page_num)

        # Execute all Gemini calls in parallel
        logger.info(f"\nπŸš€ Launching {len(tasks)} parallel Gemini API calls...")
        import time
        start_time = time.time()

        results = await asyncio.gather(*tasks, return_exceptions=True)

        elapsed = time.time() - start_time
        logger.info(f"βœ“ All {len(tasks)} Gemini calls completed in {elapsed:.2f}s (parallel)")
        logger.info(f"  Average: {elapsed/len(tasks):.2f}s per page (would be {elapsed*len(tasks):.2f}s sequential)")

        # Process results
        for page_num, page_triples in zip(page_numbers, results):
            if isinstance(page_triples, Exception):
                logger.error(f"  ❌ Page {page_num} failed: {page_triples}")
                continue

            if page_triples:
                all_triples.extend(page_triples)
                logger.info(f"  βœ“ Page {page_num}: Extracted {len(page_triples)} triples")
                for t in page_triples:
                    relation_value = t.relation.value if hasattr(t.relation, 'value') else t.relation
                    logger.info(f"    β†’ {t.subject_label} --[{relation_value}]--> {t.object_label}")
            else:
                logger.warning(f"  ⚠️ Page {page_num}: NO TRIPLES EXTRACTED!")

        # Summary
        unique_concepts = set()
        concepts_by_page = {}
        for triple in all_triples:
            unique_concepts.add(triple.subject_label)
            unique_concepts.add(triple.object_label)
            page = triple.page_number
            if page not in concepts_by_page:
                concepts_by_page[page] = set()
            concepts_by_page[page].add(triple.subject_label)
            concepts_by_page[page].add(triple.object_label)

        logger.info(f"\n{'='*80}")
        logger.info(f"{'EXTRACTION SUMMARY':^80}")
        logger.info(f"{'='*80}")
        logger.info(f"Pages processed: {len(chunks_by_page)}")
        logger.info(f"Total triples: {len(all_triples)}")
        logger.info(f"Unique concepts: {len(unique_concepts)} (max {len(chunks_by_page) * 2})")

        if len(all_triples) == 0:
            logger.error(f"\n❌❌❌ CRITICAL ERROR: ZERO TRIPLES EXTRACTED! ❌❌❌")
            logger.error(f"This means:")
            logger.error(f"  - Either Gemini returned no concepts")
            logger.error(f"  - Or all concepts were rejected by filters")
            logger.error(f"  - Or there was an API error")
            logger.error(f"Check the logs above for details!")
        else:
            logger.info(f"\nConcepts per page:")
            for page in sorted(concepts_by_page.keys()):
                logger.info(f"  Page {page}: {list(concepts_by_page[page])}")

        logger.info(f"{'='*80}\n")

        return all_triples

    async def _extract_with_gemini(self, text: str, page_number: int) -> List[CanonicalTriple]:
        """
        Call Gemini API to extract technical concepts (nodes) from THIS PAGE

        Args:
            text: Text from single page
            page_number: Page number

        Returns:
            List of canonical triples
        """
        # Specialized technical concept extraction prompt
        prompt = f"""You are an expert in technical information extraction and knowledge graph construction.
Your task is to identify only the most meaningful *technical concepts* from the given text.
Concepts must represent scientific, mathematical, algorithmic, or methodological entities
that could exist as standalone nodes in a knowledge graph.
Ignore generic words, section titles, variable names, and everyday terms.
Focus on high-value, domain-specific terminology relevant to the text.

Extract all important technical concepts from the following text that would form the
nodes of a knowledge graph.

βš™οΈ Rules:
β€’ Each concept should represent a self-contained technical idea, model, method, metric, loss, theorem, or process
β€’ Keep only multi-word phrases when possible ("gradient descent", "convolutional neural network", "cross-entropy loss")
β€’ Skip single, contextless nouns ("data", "model", "value", "equation", "result")
β€’ Merge synonymous terms (e.g., "SGD", "stochastic gradient descent" β†’ one entry)
β€’ Do not include equations, numeric values, figure names, or symbols
β€’ Do not repeat concepts
β€’ Maintain consistent naming conventions (lowercase, hyphen-separated words)
β€’ Extract MAXIMUM 4-5 concepts from this page (quality over quantity)

Return output strictly as JSON with "nodes" key:
{{
  "nodes": [
    "gradient descent",
    "neural network",
    "cross entropy loss"
  ]
}}

PAGE {page_number} TEXT:
{text}

CRITICAL: Return ONLY the JSON. If no technical concepts found, return {{"nodes": []}}"""

        logger.info(f"  πŸš€ Starting Gemini extraction for page {page_number}...")
        logger.info(f"  Text length: {len(text)} characters")

        try:
            # Call Gemini via litellm
            logger.info(f"  πŸ“‘ Calling Gemini API for page {page_number}...")

            response = await asyncio.to_thread(
                self.litellm.completion,
                model=self.model_name,
                api_key=self.api_key,
                messages=[{
                    "role": "user",
                    "content": prompt
                }],
                temperature=0.0,  
                max_tokens=settings.llm_max_tokens,
                timeout=settings.llm_timeout
            )

            # Extract response text
            response_text = response.choices[0].message.content.strip()
            logger.info(f"  πŸ“₯ Gemini response ({len(response_text)} chars):")
            logger.info(f"  {response_text[:500]}") 

            
            if "```json" in response_text:
                response_text = response_text.split("```json")[1].split("```")[0].strip()
            elif "```" in response_text:
                response_text = response_text.split("```")[1].split("```")[0].strip()

            data = json.loads(response_text)

            
            if isinstance(data, dict) and "nodes" in data:
                nodes = data["nodes"]
            elif isinstance(data, list):
                # Fallback: if Gemini returned a list directly
                nodes = data
            else:
                logger.warning(f"  ❌ Gemini returned unexpected format: {type(data)}")
                return []

            if not isinstance(nodes, list):
                logger.warning(f"  ❌ Nodes is not a list, got: {type(nodes)}")
                return []

            logger.info(f"  βœ“ Gemini extracted {len(nodes)} nodes from page {page_number}")
            logger.info(f"  Raw nodes: {nodes}")

            # Validate and filter nodes
            valid_nodes = []
            rejected_nodes = []

            for node in nodes:
                if not isinstance(node, str):
                    logger.warning(f"  ⚠️ Skipping non-string node: {node}")
                    continue

                node = node.strip()
                if not node:
                    continue

                logger.info(f"  Validating node: '{node}'")

                # FILTER: Validate node is a technical concept
                if not self._is_technical_concept(node):
                    rejected_nodes.append(node)
                    logger.warning(f"  βœ— REJECTED node '{node}' - not technical enough")
                    continue

                logger.info(f"  βœ… ACCEPTED node: '{node}'")
                valid_nodes.append(node.lower())

            # Summary of rejections
            if rejected_nodes:
                logger.warning(f"  πŸ“Š Rejected {len(rejected_nodes)} nodes: {rejected_nodes}")

            if not valid_nodes:
                logger.warning(f"  ⚠️ ALL {len(nodes)} NODES REJECTED for page {page_number}")
                logger.warning(f"  No valid technical concepts found. Returning empty list.")
                return []

            
            selected_nodes = valid_nodes[:2]  #
            logger.info(f"  🎯 Selected {len(selected_nodes)} nodes (hard cap = 2): {selected_nodes}")

            
            page_triples = []

            if len(selected_nodes) == 1:
                # Only one node - create self-referencing relationship or skip
                logger.info(f"  ℹ️ Only 1 node on page {page_number}, cannot create relationships")
                
                return []

            elif len(selected_nodes) == 2:
                # Use LLM to determine actual relationship between nodes
                node1, node2 = selected_nodes[0], selected_nodes[1]

                # Extract relationship using LLM with page context
                logger.info(f"  πŸ” Extracting relationship between: {node1} ↔ {node2}")
                relationship_triple = await self._extract_relationship_with_gemini(
                    text=text,
                    node1=node1,
                    node2=node2,
                    page_number=page_number
                )

                if relationship_triple:
                    page_triples.append(relationship_triple)
                    logger.info(f"  βœ… Created directed edge:")
                    logger.info(f"    β†’ {relationship_triple.subject_label} --[{relationship_triple.relation.value}]--> {relationship_triple.object_label}")
                    logger.info(f"    Justification: {relationship_triple.justification}")
                else:
                    logger.warning(f"  ⚠️ Could not extract relationship for {node1} ↔ {node2}")

            logger.info(f"  βœ… Returning {len(page_triples)} triples for page {page_number}")
            return page_triples

        except json.JSONDecodeError as e:
            logger.error(f"  ❌ JSON PARSE ERROR for page {page_number}: {e}")
            logger.error(f"  Response was: {response_text[:500]}")
            return []

        except Exception as e:
            logger.error(f"  ❌ GEMINI API FAILED for page {page_number}: {e}")
            logger.error(f"  Exception type: {type(e).__name__}")
            logger.error(f"  Full trace:", exc_info=True)
            return []

    async def _extract_relationship_with_gemini(self, text: str, node1: str, node2: str, page_number: int) -> Optional[CanonicalTriple]:
        """
        Use Gemini to determine the actual relationship between two nodes based on page context

        Args:
            text: Full page text for context
            node1: First node/concept
            node2: Second node/concept
            page_number: Page number

        Returns:
            CanonicalTriple with proper relationship, or None if extraction fails
        """
        # List all available relation types for the LLM
        available_relations = [r.value for r in RelationType]

        prompt = f"""You are an expert at extracting knowledge graph relationships from technical text.

Given two concepts and the text they appear in, determine the most accurate relationship between them.

**Concepts:**
- Concept A: "{node1}"
- Concept B: "{node2}"

**Context (page {page_number}):**
{text[:3000]}

**Available Relationship Types:**
{', '.join(available_relations)}

**Instructions:**
1. Analyze how these two concepts relate in the given context
2. Choose the MOST SPECIFIC relationship type from the list above
3. Determine the direction: which concept is the subject and which is the object
4. Provide a brief justification from the text

**Output Format (JSON):**
{{
  "subject": "<node1 or node2>",
  "object": "<node1 or node2>",
  "relation": "<one of the available relationship types>",
  "confidence": <0.0-1.0>,
  "justification": "<brief explanation from text>"
}}

**Rules:**
- Use the exact concept names provided
- Choose only ONE relation type from the available list
- If no clear relationship exists, use "related_to"
- Direction matters: subject performs/has the relation to the object
"""

        try:
            # Call Gemini API
            response_text = await self.litellm.acompletion(
                model=self.model_name,
                messages=[
                    {"role": "system", "content": "You are an expert at knowledge graph relationship extraction. Always output valid JSON."},
                    {"role": "user", "content": prompt}
                ],
                api_key=self.api_key,
                temperature=0.1,  # Low temperature for consistent relationship extraction
                response_format={"type": "json_object"}
            )

            response_content = response_text.choices[0].message.content
            data = json.loads(response_content)

            # Validate response
            subject = data.get("subject", "").strip()
            obj = data.get("object", "").strip()
            relation_str = data.get("relation", "related_to").lower().strip().replace(" ", "_")
            confidence = float(data.get("confidence", 0.7))
            justification = data.get("justification", f"Relationship extracted from page {page_number}")

            # Map relation string to enum
            try:
                relation = RelationType(relation_str)
            except ValueError:
                logger.warning(f"  ⚠️ Invalid relation '{relation_str}', defaulting to RELATED_TO")
                relation = RelationType.RELATED_TO

            # Create triple
            triple = CanonicalTriple(
                subject_label=subject,
                object_label=obj,
                relation=relation,
                confidence=confidence,
                justification=justification,
                page_number=page_number
            )

            return triple

        except json.JSONDecodeError as e:
            logger.error(f"  ❌ JSON parse error in relationship extraction: {e}")
            return None
        except Exception as e:
            logger.error(f"  ❌ Relationship extraction failed: {e}")
            return None

    def _is_technical_concept(self, concept: str) -> bool:
        """

        Args:
            concept: Concept string to validate

        Returns:
            True if highly technical/specific, False otherwise
        """
        concept_lower = concept.lower().strip()

        # RULE 1: Reject if in stopwords
        if concept_lower in self.generic_stopwords:
            logger.debug(f"Rejected '{concept}' - in stopword list")
            return False

        # RULE 2: Reject if any word is a generic stopword (stricter)
        words = concept_lower.split()
        for word in words:
            if word in self.generic_stopwords:
                # Allow if it's part of a specific multi-word technical term
                # e.g., "convolutional neural network" has "network" but is specific
                if len(words) < 2:
                    logger.debug(f"Rejected '{concept}' - contains generic word '{word}'")
                    return False

        # RULE 3: Single-word concepts must have SOME specificity (RELAXED)
        if len(words) == 1:
            # Accept if ANY of these are true:
            # - Has uppercase (BERT, Adam, PyTorch)
            # - Has numbers (VGG16, GPT3)
            # - Has special chars (t-SNE, bi-LSTM)
            # - Longish word (8+ chars like "backpropagation")
            has_uppercase = any(c.isupper() for c in concept)
            has_numbers = any(c.isdigit() for c in concept)
            has_special = '-' in concept or '_' in concept
            is_longish = len(concept) >= 8  # RELAXED from 10

            if not (has_uppercase or has_numbers or has_special or is_longish):
                logger.debug(f"Rejected '{concept}' - single word not specific enough")
                return False

        # RULE 4: Multi-word phrases - very lenient
        if len(words) >= 2:
            # Just check that it's not ALL generic words
            # At least one word should be non-generic or have caps/numbers
            has_caps = any(c.isupper() for c in concept)
            has_numbers = any(c.isdigit() for c in concept)
            has_hyphen = '-' in concept

            # Count non-generic words
            non_generic_count = sum(1 for w in words if w not in self.generic_stopwords)

            # Accept if ANY of these:
            # - Has caps/numbers/hyphen
            # - At least one word is non-generic
            # - 3+ words (likely specific enough)
            if not (has_caps or has_numbers or has_hyphen or non_generic_count > 0 or len(words) >= 3):
                logger.debug(f"Rejected '{concept}' - multi-word phrase too generic")
                return False

        # RULE 5: Reject very short terms (1-2 chars) unless they're known acronyms (all caps)
        if len(concept) <= 2 and concept.upper() != concept:
            logger.debug(f"Rejected '{concept}' - too short")
            return False

        # RULE 6: Must contain at least one alphanumeric character
        if not any(c.isalnum() for c in concept):
            logger.debug(f"Rejected '{concept}' - no alphanumeric chars")
            return False

        # RULE 7: Reject if it's just a generic category with a modifier
        # e.g., "new algorithm", "proposed method", "our model"
        generic_patterns = [
            'new ', 'novel ', 'proposed ', 'our ', 'this ', 'that ',
            'these ', 'those ', 'such ', 'other ', 'another ',
            'existing ', 'current ', 'previous ', 'standard '
        ]
        for pattern in generic_patterns:
            if concept_lower.startswith(pattern):
                logger.debug(f"Rejected '{concept}' - generic pattern")
                return False

        # Passed all strict filters
        return True

    def _map_relation(self, relation_str: str) -> RelationType:
        """Map relation string to RelationType enum"""
        relation_lower = relation_str.lower().strip()

        # Direct mapping
        mapping = {
            "uses": RelationType.USES,
            "implements": RelationType.IMPLEMENTS,
            "is_a": RelationType.IS_A,
            "is a": RelationType.IS_A,
            "part_of": RelationType.PART_OF,
            "part of": RelationType.PART_OF,
            "requires": RelationType.REQUIRES,
            "produces": RelationType.PRODUCES,
            "enables": RelationType.ENABLES,
            "improves": RelationType.IMPROVES,
            "enhances": RelationType.ENHANCES,
            "contains": RelationType.CONTAINS,
            "depends_on": RelationType.DEPENDS_ON,
            "depends on": RelationType.DEPENDS_ON,
            "related_to": RelationType.RELATED_TO,
            "related to": RelationType.RELATED_TO,
        }

        if relation_lower in mapping:
            return mapping[relation_lower]

        # Fallback
        logger.debug(f"Unknown relation '{relation_str}', using 'related_to'")
        return RelationType.RELATED_TO