Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
f71078c
1
Parent(s):
b43c4a1
styling, move frame_asr init to transcribe function
Browse filesSigned-off-by: Elena Rastorgueva <[email protected]>
app.py
CHANGED
|
@@ -32,20 +32,6 @@ model.cfg.preprocessor.pad_to = 0
|
|
| 32 |
feature_stride = model.cfg.preprocessor['window_stride']
|
| 33 |
model_stride_in_secs = feature_stride * 8 # 8 = model stride, which is 8 for FastConformer
|
| 34 |
|
| 35 |
-
frame_asr_10s = FrameBatchMultiTaskAED(
|
| 36 |
-
asr_model=model,
|
| 37 |
-
frame_len=10.0,
|
| 38 |
-
total_buffer=10.0,
|
| 39 |
-
batch_size=16,
|
| 40 |
-
)
|
| 41 |
-
|
| 42 |
-
frame_asr_40s = FrameBatchMultiTaskAED(
|
| 43 |
-
asr_model=model,
|
| 44 |
-
frame_len=40.0,
|
| 45 |
-
total_buffer=40.0,
|
| 46 |
-
batch_size=16,
|
| 47 |
-
)
|
| 48 |
-
|
| 49 |
amp_dtype = torch.float16
|
| 50 |
|
| 51 |
def convert_audio(audio_filepath, tmpdir, utt_id):
|
|
@@ -139,16 +125,23 @@ def transcribe(audio_filepath, src_lang, tgt_lang, pnc, gen_ts):
|
|
| 139 |
<html lang="en">
|
| 140 |
<head>
|
| 141 |
<style>
|
| 142 |
-
|
| 143 |
.transcript {
|
| 144 |
font-family: Arial, sans-serif;
|
| 145 |
line-height: 1.6;
|
|
|
|
| 146 |
}
|
| 147 |
.timestamp {
|
| 148 |
color: gray;
|
| 149 |
font-size: 0.8em;
|
| 150 |
margin-right: 5px;
|
| 151 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
</style>
|
| 153 |
</head>
|
| 154 |
<body>
|
|
@@ -160,8 +153,15 @@ def transcribe(audio_filepath, src_lang, tgt_lang, pnc, gen_ts):
|
|
| 160 |
if duration < 10:
|
| 161 |
output = model.transcribe(manifest_filepath)
|
| 162 |
else:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
output = get_buffered_pred_feat_multitaskAED(
|
| 164 |
-
|
| 165 |
model.cfg.preprocessor,
|
| 166 |
model_stride_in_secs,
|
| 167 |
model.device,
|
|
@@ -172,14 +172,14 @@ def transcribe(audio_filepath, src_lang, tgt_lang, pnc, gen_ts):
|
|
| 172 |
# process output to get word and segment level timestamps
|
| 173 |
word_level_timestamps = output[0].timestamp["word"]
|
| 174 |
|
| 175 |
-
output_html += "<
|
| 176 |
output_html += "<div class='transcript'>\n"
|
| 177 |
for entry in word_level_timestamps:
|
| 178 |
output_html += f'<span>{entry["word"]} <span class="timestamp">({entry["start"]:.2f}-{entry["end"]:.2f})</span></span>\n'
|
| 179 |
output_html += "</div>\n"
|
| 180 |
|
| 181 |
segment_level_timestamps = output[0].timestamp["segment"]
|
| 182 |
-
output_html += "<
|
| 183 |
output_html += "<div class='transcript'>\n"
|
| 184 |
for entry in segment_level_timestamps:
|
| 185 |
output_html += f'<span>{entry["segment"]} <span class="timestamp">({entry["start"]:.2f}-{entry["end"]:.2f})</span></span>\n'
|
|
@@ -191,8 +191,14 @@ def transcribe(audio_filepath, src_lang, tgt_lang, pnc, gen_ts):
|
|
| 191 |
output = model.transcribe(manifest_filepath)
|
| 192 |
|
| 193 |
else: # do buffered inference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 194 |
output = get_buffered_pred_feat_multitaskAED(
|
| 195 |
-
|
| 196 |
model.cfg.preprocessor,
|
| 197 |
model_stride_in_secs,
|
| 198 |
model.device,
|
|
@@ -200,7 +206,10 @@ def transcribe(audio_filepath, src_lang, tgt_lang, pnc, gen_ts):
|
|
| 200 |
filepaths=None,
|
| 201 |
)
|
| 202 |
|
| 203 |
-
|
|
|
|
|
|
|
|
|
|
| 204 |
output_text = output[0].text
|
| 205 |
output_html += f'<div class="transcript">{output_text}</div>\n'
|
| 206 |
|
|
|
|
| 32 |
feature_stride = model.cfg.preprocessor['window_stride']
|
| 33 |
model_stride_in_secs = feature_stride * 8 # 8 = model stride, which is 8 for FastConformer
|
| 34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
amp_dtype = torch.float16
|
| 36 |
|
| 37 |
def convert_audio(audio_filepath, tmpdir, utt_id):
|
|
|
|
| 125 |
<html lang="en">
|
| 126 |
<head>
|
| 127 |
<style>
|
|
|
|
| 128 |
.transcript {
|
| 129 |
font-family: Arial, sans-serif;
|
| 130 |
line-height: 1.6;
|
| 131 |
+
margin: 20px 0;
|
| 132 |
}
|
| 133 |
.timestamp {
|
| 134 |
color: gray;
|
| 135 |
font-size: 0.8em;
|
| 136 |
margin-right: 5px;
|
| 137 |
}
|
| 138 |
+
.heading {
|
| 139 |
+
color: #2c3e50;
|
| 140 |
+
font-family: Arial, sans-serif;
|
| 141 |
+
font-weight: bold;
|
| 142 |
+
margin: 15px 0 8px 0;
|
| 143 |
+
border-bottom: 1px solid #eee;
|
| 144 |
+
}
|
| 145 |
</style>
|
| 146 |
</head>
|
| 147 |
<body>
|
|
|
|
| 153 |
if duration < 10:
|
| 154 |
output = model.transcribe(manifest_filepath)
|
| 155 |
else:
|
| 156 |
+
frame_asr = FrameBatchMultiTaskAED(
|
| 157 |
+
asr_model=model,
|
| 158 |
+
frame_len=10.0,
|
| 159 |
+
total_buffer=10.0,
|
| 160 |
+
batch_size=16,
|
| 161 |
+
)
|
| 162 |
+
|
| 163 |
output = get_buffered_pred_feat_multitaskAED(
|
| 164 |
+
frame_asr,
|
| 165 |
model.cfg.preprocessor,
|
| 166 |
model_stride_in_secs,
|
| 167 |
model.device,
|
|
|
|
| 172 |
# process output to get word and segment level timestamps
|
| 173 |
word_level_timestamps = output[0].timestamp["word"]
|
| 174 |
|
| 175 |
+
output_html += "<div class='heading'>Transcript with word-level timestamps (in seconds)</div>\n"
|
| 176 |
output_html += "<div class='transcript'>\n"
|
| 177 |
for entry in word_level_timestamps:
|
| 178 |
output_html += f'<span>{entry["word"]} <span class="timestamp">({entry["start"]:.2f}-{entry["end"]:.2f})</span></span>\n'
|
| 179 |
output_html += "</div>\n"
|
| 180 |
|
| 181 |
segment_level_timestamps = output[0].timestamp["segment"]
|
| 182 |
+
output_html += "<div class='heading'>Transcript with segment-level timestamps (in seconds)</div>\n"
|
| 183 |
output_html += "<div class='transcript'>\n"
|
| 184 |
for entry in segment_level_timestamps:
|
| 185 |
output_html += f'<span>{entry["segment"]} <span class="timestamp">({entry["start"]:.2f}-{entry["end"]:.2f})</span></span>\n'
|
|
|
|
| 191 |
output = model.transcribe(manifest_filepath)
|
| 192 |
|
| 193 |
else: # do buffered inference
|
| 194 |
+
frame_asr = FrameBatchMultiTaskAED(
|
| 195 |
+
asr_model=model,
|
| 196 |
+
frame_len=40.0,
|
| 197 |
+
total_buffer=40.0,
|
| 198 |
+
batch_size=16,
|
| 199 |
+
)
|
| 200 |
output = get_buffered_pred_feat_multitaskAED(
|
| 201 |
+
frame_asr,
|
| 202 |
model.cfg.preprocessor,
|
| 203 |
model_stride_in_secs,
|
| 204 |
model.device,
|
|
|
|
| 206 |
filepaths=None,
|
| 207 |
)
|
| 208 |
|
| 209 |
+
if taskname == "asr":
|
| 210 |
+
output_html += "<div class='heading'>Transcript</div>\n"
|
| 211 |
+
else:
|
| 212 |
+
output_html += "<div class='heading'>Translated Text</div>\n"
|
| 213 |
output_text = output[0].text
|
| 214 |
output_html += f'<div class="transcript">{output_text}</div>\n'
|
| 215 |
|