input fix
Browse files
app.py
CHANGED
|
@@ -20,8 +20,8 @@ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
| 20 |
|
| 21 |
image_size = 384
|
| 22 |
transform = transforms.Compose([
|
| 23 |
-
transforms.Resize((image_size,image_size),interpolation=InterpolationMode.BICUBIC),
|
| 24 |
transforms.ToTensor(),
|
|
|
|
| 25 |
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
|
| 26 |
])
|
| 27 |
|
|
@@ -31,6 +31,7 @@ model.eval()
|
|
| 31 |
model = model.to(device)
|
| 32 |
|
| 33 |
def inference(raw_image):
|
|
|
|
| 34 |
image = transform(raw_image).unsqueeze(0).to(device)
|
| 35 |
with torch.no_grad():
|
| 36 |
caption = model.generate(image, sample=False, num_beams=1, max_length=60, min_length=5)
|
|
@@ -40,8 +41,16 @@ def inference(raw_image):
|
|
| 40 |
inputs = [gr.Image(type='pil', interactive=False),]
|
| 41 |
outputs = gr.outputs.Textbox(label="Caption")
|
| 42 |
|
| 43 |
-
title = "FuseCap"
|
| 44 |
description = "Gradio demo for FuseCap: Leveraging Large Language Models to Fuse Visual Data into Enriched Image Captions. This demo features a BLIP-based model, trained using FuseCap."
|
| 45 |
|
| 46 |
article = "place holder"
|
| 47 |
-
gr.Interface(inference,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
image_size = 384
|
| 22 |
transform = transforms.Compose([
|
|
|
|
| 23 |
transforms.ToTensor(),
|
| 24 |
+
transforms.Resize((image_size,image_size),interpolation=InterpolationMode.BICUBIC),
|
| 25 |
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
|
| 26 |
])
|
| 27 |
|
|
|
|
| 31 |
model = model.to(device)
|
| 32 |
|
| 33 |
def inference(raw_image):
|
| 34 |
+
# raw_image = torch.tensor(raw_image)
|
| 35 |
image = transform(raw_image).unsqueeze(0).to(device)
|
| 36 |
with torch.no_grad():
|
| 37 |
caption = model.generate(image, sample=False, num_beams=1, max_length=60, min_length=5)
|
|
|
|
| 41 |
inputs = [gr.Image(type='pil', interactive=False),]
|
| 42 |
outputs = gr.outputs.Textbox(label="Caption")
|
| 43 |
|
|
|
|
| 44 |
description = "Gradio demo for FuseCap: Leveraging Large Language Models to Fuse Visual Data into Enriched Image Captions. This demo features a BLIP-based model, trained using FuseCap."
|
| 45 |
|
| 46 |
article = "place holder"
|
| 47 |
+
iface = gr.Interface(fn=inference,
|
| 48 |
+
inputs="image",
|
| 49 |
+
outputs="text",
|
| 50 |
+
title="FuseCap",
|
| 51 |
+
description=description,
|
| 52 |
+
article=article,
|
| 53 |
+
examples=[['birthday_dog.jpeg']],
|
| 54 |
+
enable_queue=True)
|
| 55 |
+
iface.launch()
|
| 56 |
+
# gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, examples=[['birthday_dog.jpeg']]).launch(enable_queue=True)
|