demo fix commit
Browse files
app.py
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# import gradio as gr
|
| 2 |
+
|
| 3 |
+
# def greet(image):
|
| 4 |
+
# return "Shape " + image.shape + "!!"
|
| 5 |
+
|
| 6 |
+
# iface = gr.Interface(fn=greet, inputs="image", outputs="text")
|
| 7 |
+
# iface.launch()
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
import sys
|
| 11 |
+
from IPython.display import display, HTML
|
| 12 |
+
from BLIP.models.blip import blip_decoder
|
| 13 |
+
from google_drive_downloader import GoogleDriveDownloader as gdd
|
| 14 |
+
from PIL import Image
|
| 15 |
+
import requests
|
| 16 |
+
import torch
|
| 17 |
+
from torchvision import transforms
|
| 18 |
+
from torchvision.transforms.functional import InterpolationMode
|
| 19 |
+
from urllib.parse import urlparse
|
| 20 |
+
from google_drive_downloader import GoogleDriveDownloader as gdd
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
transform = transforms.Compose([
|
| 27 |
+
transforms.Resize((image_size,image_size),interpolation=InterpolationMode.BICUBIC),
|
| 28 |
+
transforms.ToTensor(),
|
| 29 |
+
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
|
| 30 |
+
])
|
| 31 |
+
|
| 32 |
+
model_url = "https://technionmail-my.sharepoint.com/personal/snoamr_campus_technion_ac_il/_layouts/15/download.aspx?share=EZxgXQaBXGREgDsQiaTcwAAB0z8jQA_hgAnwwPQDt8Dgew"
|
| 33 |
+
model = blip_decoder(pretrained=model_url, image_size=384, vit='base')
|
| 34 |
+
model.eval()
|
| 35 |
+
model = model.to(device)
|
| 36 |
+
|
| 37 |
+
def inference(raw_image):
|
| 38 |
+
image = transform(raw_image).unsqueeze(0).to(device)
|
| 39 |
+
with torch.no_grad():
|
| 40 |
+
caption = model.generate(image, sample=False, num_beams=1, max_length=60, min_length=5)
|
| 41 |
+
return caption[0]
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
inputs = [gr.Image(type='pil', interactive=False),]
|
| 45 |
+
outputs = gr.outputs.Textbox(label="Caption")
|
| 46 |
+
|
| 47 |
+
title = "FuseCap"
|
| 48 |
+
description = "Gradio demo for FuseCap: Leveraging Large Language Models to Fuse Visual Data into Enriched Image Captions. This demo features a BLIP-based model, trained using FuseCap."
|
| 49 |
+
|
| 50 |
+
article = "place holder"
|
| 51 |
+
gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, examples=[['birthday_dog.jpeg']]).launch(enable_queue=True)
|