tried to fix error
Browse files
app.py
CHANGED
|
@@ -4,44 +4,32 @@ import spaces
|
|
| 4 |
import torch
|
| 5 |
from transformers import BlipProcessor, BlipForConditionalGeneration
|
| 6 |
|
| 7 |
-
|
| 8 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 9 |
processor = BlipProcessor.from_pretrained("noamrot/FuseCap_Image_Captioning")
|
| 10 |
model = BlipForConditionalGeneration.from_pretrained("noamrot/FuseCap_Image_Captioning").to(device)
|
| 11 |
|
| 12 |
@spaces.GPU(duration=15)
|
| 13 |
def inference(raw_image):
|
| 14 |
-
global model
|
| 15 |
-
cur_device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 16 |
-
model = model.to(device)
|
| 17 |
text = "a picture of "
|
| 18 |
-
inputs = processor(raw_image, text, return_tensors="pt").to(
|
| 19 |
out = model.generate(**inputs)
|
| 20 |
caption = processor.decode(out[0], skip_special_tokens=True)
|
| 21 |
return caption
|
| 22 |
|
| 23 |
-
|
| 24 |
-
inputs = [gr.Image(type='pil', interactive=False),]
|
| 25 |
-
# outputs = gr.outputs.Textbox(label="Caption")
|
| 26 |
outputs = gr.Textbox(label="Caption")
|
| 27 |
|
| 28 |
description = "Gradio demo for FuseCap: Leveraging Large Language Models for Enriched Fused Image Captions. This demo features a BLIP-based model, trained using FuseCap."
|
| 29 |
examples = [["surfer.jpg"], ["bike.jpg"]]
|
| 30 |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2305.17718' target='_blank'>FuseCap: Leveraging Large Language Models for Enriched Fused Image Captions</a>"
|
| 31 |
|
| 32 |
-
|
| 33 |
iface = gr.Interface(fn=inference,
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
# enable_queue=True
|
| 41 |
-
)
|
| 42 |
|
| 43 |
iface.queue()
|
| 44 |
-
|
| 45 |
-
|
| 46 |
iface.launch()
|
| 47 |
-
|
|
|
|
| 4 |
import torch
|
| 5 |
from transformers import BlipProcessor, BlipForConditionalGeneration
|
| 6 |
|
|
|
|
| 7 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 8 |
processor = BlipProcessor.from_pretrained("noamrot/FuseCap_Image_Captioning")
|
| 9 |
model = BlipForConditionalGeneration.from_pretrained("noamrot/FuseCap_Image_Captioning").to(device)
|
| 10 |
|
| 11 |
@spaces.GPU(duration=15)
|
| 12 |
def inference(raw_image):
|
|
|
|
|
|
|
|
|
|
| 13 |
text = "a picture of "
|
| 14 |
+
inputs = processor(raw_image, text, return_tensors="pt").to(device)
|
| 15 |
out = model.generate(**inputs)
|
| 16 |
caption = processor.decode(out[0], skip_special_tokens=True)
|
| 17 |
return caption
|
| 18 |
|
| 19 |
+
inputs = gr.Image(type="pil", interactive=False)
|
|
|
|
|
|
|
| 20 |
outputs = gr.Textbox(label="Caption")
|
| 21 |
|
| 22 |
description = "Gradio demo for FuseCap: Leveraging Large Language Models for Enriched Fused Image Captions. This demo features a BLIP-based model, trained using FuseCap."
|
| 23 |
examples = [["surfer.jpg"], ["bike.jpg"]]
|
| 24 |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2305.17718' target='_blank'>FuseCap: Leveraging Large Language Models for Enriched Fused Image Captions</a>"
|
| 25 |
|
|
|
|
| 26 |
iface = gr.Interface(fn=inference,
|
| 27 |
+
inputs=inputs,
|
| 28 |
+
outputs=outputs,
|
| 29 |
+
title="FuseCap",
|
| 30 |
+
description=description,
|
| 31 |
+
article=article,
|
| 32 |
+
examples=examples)
|
|
|
|
|
|
|
| 33 |
|
| 34 |
iface.queue()
|
|
|
|
|
|
|
| 35 |
iface.launch()
|
|
|