Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import os | |
| from pathlib import Path | |
| import autogen | |
| import chromadb | |
| import multiprocessing as mp | |
| from autogen.retrieve_utils import TEXT_FORMATS, get_file_from_url, is_url | |
| from autogen.agentchat.contrib.retrieve_assistant_agent import RetrieveAssistantAgent | |
| from autogen.agentchat.contrib.retrieve_user_proxy_agent import ( | |
| RetrieveUserProxyAgent, | |
| PROMPT_CODE, | |
| ) | |
| TIMEOUT = 60 | |
| def initialize_agents(config_list, docs_path=None): | |
| if isinstance(config_list, gr.State): | |
| _config_list = config_list.value | |
| else: | |
| _config_list = config_list | |
| if docs_path is None: | |
| docs_path = "https://raw.githubusercontent.com/microsoft/autogen/main/README.md" | |
| assistant = RetrieveAssistantAgent( | |
| name="assistant", | |
| system_message="You are a helpful assistant.", | |
| ) | |
| ragproxyagent = RetrieveUserProxyAgent( | |
| name="ragproxyagent", | |
| human_input_mode="NEVER", | |
| max_consecutive_auto_reply=5, | |
| retrieve_config={ | |
| "task": "code", | |
| "docs_path": docs_path, | |
| "chunk_token_size": 2000, | |
| "model": _config_list[0]["model"], | |
| "client": chromadb.PersistentClient(path="/tmp/chromadb"), | |
| "embedding_model": "all-mpnet-base-v2", | |
| "customized_prompt": PROMPT_CODE, | |
| "get_or_create": True, | |
| "collection_name": "autogen_rag", | |
| }, | |
| ) | |
| return assistant, ragproxyagent | |
| def initiate_chat(config_list, problem, queue, n_results=3): | |
| global assistant, ragproxyagent | |
| if isinstance(config_list, gr.State): | |
| _config_list = config_list.value | |
| else: | |
| _config_list = config_list | |
| if len(_config_list[0].get("api_key", "")) < 2: | |
| queue.put( | |
| ["Hi, nice to meet you! Please enter your API keys in below text boxs."] | |
| ) | |
| return | |
| else: | |
| llm_config = ( | |
| { | |
| "request_timeout": TIMEOUT, | |
| # "seed": 42, | |
| "config_list": _config_list, | |
| "use_cache": False, | |
| }, | |
| ) | |
| assistant.llm_config.update(llm_config[0]) | |
| assistant.reset() | |
| try: | |
| ragproxyagent.initiate_chat( | |
| assistant, problem=problem, silent=False, n_results=n_results | |
| ) | |
| messages = ragproxyagent.chat_messages | |
| messages = [messages[k] for k in messages.keys()][0] | |
| messages = [m["content"] for m in messages if m["role"] == "user"] | |
| print("messages: ", messages) | |
| except Exception as e: | |
| messages = [str(e)] | |
| queue.put(messages) | |
| def chatbot_reply(input_text): | |
| """Chat with the agent through terminal.""" | |
| queue = mp.Queue() | |
| process = mp.Process( | |
| target=initiate_chat, | |
| args=(config_list, input_text, queue), | |
| ) | |
| process.start() | |
| try: | |
| # process.join(TIMEOUT+2) | |
| messages = queue.get(timeout=TIMEOUT) | |
| except Exception as e: | |
| messages = [ | |
| str(e) | |
| if len(str(e)) > 0 | |
| else "Invalid Request to OpenAI, please check your API keys." | |
| ] | |
| finally: | |
| try: | |
| process.terminate() | |
| except: | |
| pass | |
| return messages | |
| def get_description_text(): | |
| return """ | |
| # Microsoft AutoGen: Retrieve Chat Demo | |
| This demo shows how to use the RetrieveUserProxyAgent and RetrieveAssistantAgent to build a chatbot. | |
| #### [GitHub](https://github.com/microsoft/autogen) [Discord](https://discord.gg/pAbnFJrkgZ) [Blog](https://microsoft.github.io/autogen/blog/2023/10/18/RetrieveChat) [Paper](https://arxiv.org/abs/2308.08155) | |
| """ | |
| global assistant, ragproxyagent | |
| with gr.Blocks() as demo: | |
| config_list, assistant, ragproxyagent = ( | |
| gr.State( | |
| [ | |
| { | |
| "api_key": "", | |
| "api_base": "", | |
| "api_type": "azure", | |
| "api_version": "2023-07-01-preview", | |
| "model": "gpt-35-turbo", | |
| } | |
| ] | |
| ), | |
| None, | |
| None, | |
| ) | |
| assistant, ragproxyagent = initialize_agents(config_list) | |
| gr.Markdown(get_description_text()) | |
| chatbot = gr.Chatbot( | |
| [], | |
| elem_id="chatbot", | |
| bubble_full_width=False, | |
| avatar_images=(None, (os.path.join(os.path.dirname(__file__), "autogen.png"))), | |
| # height=600, | |
| ) | |
| txt_input = gr.Textbox( | |
| scale=4, | |
| show_label=False, | |
| placeholder="Enter text and press enter", | |
| container=False, | |
| ) | |
| with gr.Row(): | |
| def update_config(config_list): | |
| global assistant, ragproxyagent | |
| config_list = autogen.config_list_from_models( | |
| model_list=[os.environ.get("MODEL", "gpt-35-turbo")], | |
| ) | |
| if not config_list: | |
| config_list = [ | |
| { | |
| "api_key": "", | |
| "api_base": "", | |
| "api_type": "azure", | |
| "api_version": "2023-07-01-preview", | |
| "model": "gpt-35-turbo", | |
| } | |
| ] | |
| llm_config = ( | |
| { | |
| "request_timeout": TIMEOUT, | |
| # "seed": 42, | |
| "config_list": config_list, | |
| }, | |
| ) | |
| assistant.llm_config.update(llm_config[0]) | |
| ragproxyagent._model = config_list[0]["model"] | |
| return config_list | |
| def set_params(model, oai_key, aoai_key, aoai_base): | |
| os.environ["MODEL"] = model | |
| os.environ["OPENAI_API_KEY"] = oai_key | |
| os.environ["AZURE_OPENAI_API_KEY"] = aoai_key | |
| os.environ["AZURE_OPENAI_API_BASE"] = aoai_base | |
| return model, oai_key, aoai_key, aoai_base | |
| txt_model = gr.Dropdown( | |
| label="Model", | |
| choices=[ | |
| "gpt-4", | |
| "gpt-35-turbo", | |
| "gpt-3.5-turbo", | |
| ], | |
| allow_custom_value=True, | |
| value="gpt-35-turbo", | |
| container=True, | |
| ) | |
| txt_oai_key = gr.Textbox( | |
| label="OpenAI API Key", | |
| placeholder="Enter key and press enter", | |
| max_lines=1, | |
| show_label=True, | |
| value=os.environ.get("OPENAI_API_KEY", ""), | |
| container=True, | |
| type="password", | |
| ) | |
| txt_aoai_key = gr.Textbox( | |
| label="Azure OpenAI API Key", | |
| placeholder="Enter key and press enter", | |
| max_lines=1, | |
| show_label=True, | |
| value=os.environ.get("AZURE_OPENAI_API_KEY", ""), | |
| container=True, | |
| type="password", | |
| ) | |
| txt_aoai_base_url = gr.Textbox( | |
| label="Azure OpenAI API Base", | |
| placeholder="Enter base url and press enter", | |
| max_lines=1, | |
| show_label=True, | |
| value=os.environ.get("AZURE_OPENAI_API_BASE", ""), | |
| container=True, | |
| type="password", | |
| ) | |
| clear = gr.ClearButton([txt_input, chatbot]) | |
| with gr.Row(): | |
| def upload_file(file): | |
| return update_context_url(file.name) | |
| upload_button = gr.UploadButton( | |
| "Click to upload a context file or enter a url in the right textbox", | |
| file_types=[f".{i}" for i in TEXT_FORMATS], | |
| file_count="single", | |
| ) | |
| txt_context_url = gr.Textbox( | |
| label="Enter the url to your context file and chat on the context", | |
| info=f"File must be in the format of [{', '.join(TEXT_FORMATS)}]", | |
| max_lines=1, | |
| show_label=True, | |
| value="https://raw.githubusercontent.com/microsoft/autogen/main/README.md", | |
| container=True, | |
| ) | |
| txt_prompt = gr.Textbox( | |
| label="Enter your prompt for Retrieve Agent and press enter to replace the default prompt", | |
| max_lines=40, | |
| show_label=True, | |
| value=PROMPT_CODE, | |
| container=True, | |
| show_copy_button=True, | |
| ) | |
| def respond(message, chat_history, model, oai_key, aoai_key, aoai_base): | |
| global config_list | |
| set_params(model, oai_key, aoai_key, aoai_base) | |
| config_list = update_config(config_list) | |
| messages = chatbot_reply(message) | |
| _msg = ( | |
| messages[-1] | |
| if len(messages) > 0 and messages[-1] != "TERMINATE" | |
| else messages[-2] | |
| if len(messages) > 1 | |
| else "Context is not enough for answering the question. Please press `enter` in the context url textbox to make sure the context is activated for the chat." | |
| ) | |
| chat_history.append((message, _msg)) | |
| return "", chat_history | |
| def update_prompt(prompt): | |
| ragproxyagent.customized_prompt = prompt | |
| return prompt | |
| def update_context_url(context_url): | |
| global assistant, ragproxyagent | |
| file_extension = Path(context_url).suffix | |
| print("file_extension: ", file_extension) | |
| if file_extension.lower() not in [f".{i}" for i in TEXT_FORMATS]: | |
| return f"File must be in the format of {TEXT_FORMATS}" | |
| if is_url(context_url): | |
| try: | |
| file_path = get_file_from_url( | |
| context_url, | |
| save_path=os.path.join("/tmp", os.path.basename(context_url)), | |
| ) | |
| except Exception as e: | |
| return str(e) | |
| else: | |
| file_path = context_url | |
| context_url = os.path.basename(context_url) | |
| try: | |
| chromadb.PersistentClient(path="/tmp/chromadb").delete_collection( | |
| name="autogen_rag" | |
| ) | |
| except: | |
| pass | |
| assistant, ragproxyagent = initialize_agents(config_list, docs_path=file_path) | |
| return context_url | |
| txt_input.submit( | |
| respond, | |
| [txt_input, chatbot, txt_model, txt_oai_key, txt_aoai_key, txt_aoai_base_url], | |
| [txt_input, chatbot], | |
| ) | |
| txt_prompt.submit(update_prompt, [txt_prompt], [txt_prompt]) | |
| txt_context_url.submit(update_context_url, [txt_context_url], [txt_context_url]) | |
| upload_button.upload(upload_file, upload_button, [txt_context_url]) | |
| if __name__ == "__main__": | |
| demo.launch(share=True, server_name="0.0.0.0") | |