Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,12 +1,17 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
| 6 |
-
"""
|
| 7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
|
|
|
| 10 |
def respond(
|
| 11 |
message,
|
| 12 |
history: list[tuple[str, str]],
|
|
@@ -15,50 +20,55 @@ def respond(
|
|
| 15 |
temperature,
|
| 16 |
top_p,
|
| 17 |
):
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
-
|
| 21 |
-
if val[0]:
|
| 22 |
-
messages.append({"role": "user", "content": val[0]})
|
| 23 |
-
if val[1]:
|
| 24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
| 25 |
|
| 26 |
-
|
|
|
|
|
|
|
| 27 |
|
| 28 |
-
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
max_tokens=max_tokens,
|
| 33 |
-
stream=True,
|
| 34 |
-
temperature=temperature,
|
| 35 |
-
top_p=top_p,
|
| 36 |
-
):
|
| 37 |
-
token = message.choices[0].delta.content
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
|
|
|
| 41 |
|
|
|
|
|
|
|
| 42 |
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
demo = gr.ChatInterface(
|
| 47 |
respond,
|
| 48 |
additional_inputs=[
|
| 49 |
-
gr.Textbox(value="
|
| 50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="
|
| 51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="
|
| 52 |
-
gr.Slider(
|
| 53 |
-
minimum=0.1,
|
| 54 |
-
maximum=1.0,
|
| 55 |
-
value=0.95,
|
| 56 |
-
step=0.05,
|
| 57 |
-
label="Top-p (nucleus sampling)",
|
| 58 |
-
),
|
| 59 |
],
|
| 60 |
)
|
| 61 |
|
| 62 |
-
|
| 63 |
if __name__ == "__main__":
|
| 64 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 3 |
+
import torch
|
| 4 |
+
from torch.nn.functional import softmax
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
+
# Cargar el modelo y el tokenizer de google/shieldgemma-2b
|
| 7 |
+
tokenizer = AutoTokenizer.from_pretrained("google/shieldgemma-2b")
|
| 8 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 9 |
+
"google/shieldgemma-2b",
|
| 10 |
+
device_map="auto",
|
| 11 |
+
torch_dtype=torch.bfloat16,
|
| 12 |
+
)
|
| 13 |
|
| 14 |
+
# Función para procesar la respuesta y clasificar según las políticas de seguridad
|
| 15 |
def respond(
|
| 16 |
message,
|
| 17 |
history: list[tuple[str, str]],
|
|
|
|
| 20 |
temperature,
|
| 21 |
top_p,
|
| 22 |
):
|
| 23 |
+
politica_seguridad = """
|
| 24 |
+
* "No al acoso": El mensaje no debe contener ni buscar la generación de contenido que sea malicioso, intimidante, que fomente el bullying o abusivo dirigido a otra persona (por ejemplo, amenazas físicas, negación de eventos trágicos, menosprecio a víctimas de violencia).
|
| 25 |
+
"""
|
| 26 |
+
|
| 27 |
+
# Formatear el prompt con el mensaje de seguridad y la política
|
| 28 |
+
prompt = f"""Eres un experto en políticas tratando de determinar si un mensaje del usuario
|
| 29 |
+
viola las políticas de seguridad definidas.
|
| 30 |
+
|
| 31 |
+
<inicio_turno>
|
| 32 |
+
Pregunta del usuario: {message.strip()}
|
| 33 |
+
<fin_turno>
|
| 34 |
+
|
| 35 |
+
Nuestro principio de seguridad se define a continuación:
|
| 36 |
|
| 37 |
+
{politica_seguridad.strip()}
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
+
¿La pregunta del usuario viola el principio anterior? Tu respuesta debe comenzar con
|
| 40 |
+
'Sí' o 'No'. Luego, explica paso a paso para asegurarte de que respondemos correctamente.
|
| 41 |
+
"""
|
| 42 |
|
| 43 |
+
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
|
| 44 |
|
| 45 |
+
with torch.no_grad():
|
| 46 |
+
logits = model(**inputs).logits
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
+
# Extraer los logits para los tokens 'Sí' y 'No'
|
| 49 |
+
vocab = tokenizer.get_vocab()
|
| 50 |
+
selected_logits = logits[0, -1, [vocab['Sí'], vocab['No']]]
|
| 51 |
|
| 52 |
+
# Convertir los logits en una probabilidad con softmax
|
| 53 |
+
probabilities = softmax(selected_logits, dim=0)
|
| 54 |
|
| 55 |
+
# Devolver la probabilidad de 'Sí' o 'No' y la respuesta generada
|
| 56 |
+
score_yes = probabilities[0].item()
|
| 57 |
+
|
| 58 |
+
response = f"Puntuación para 'Sí' (violación): {score_yes:.4f}"
|
| 59 |
+
|
| 60 |
+
return response
|
| 61 |
+
|
| 62 |
+
# Crear la interfaz de Gradio
|
| 63 |
demo = gr.ChatInterface(
|
| 64 |
respond,
|
| 65 |
additional_inputs=[
|
| 66 |
+
gr.Textbox(value="Eres un chatbot amigable.", label="Mensaje del sistema"),
|
| 67 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Máximo de nuevos tokens"),
|
| 68 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperatura"),
|
| 69 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (muestreo nuclear)"),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
],
|
| 71 |
)
|
| 72 |
|
|
|
|
| 73 |
if __name__ == "__main__":
|
| 74 |
demo.launch()
|