Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,24 +1,26 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
| 3 |
import torch
|
| 4 |
-
from threading import Thread
|
| 5 |
import os
|
| 6 |
|
| 7 |
-
|
| 8 |
print("CUDA available:", torch.cuda.is_available())
|
| 9 |
print("CUDA version:", torch.version.cuda)
|
| 10 |
|
| 11 |
-
#
|
| 12 |
token = os.environ.get("HF_TOKEN")
|
| 13 |
|
| 14 |
model_id = "google/shieldgemma-2b"
|
| 15 |
|
| 16 |
-
#
|
| 17 |
bnb_config = BitsAndBytesConfig(
|
| 18 |
-
load_in_4bit=True,
|
|
|
|
|
|
|
|
|
|
| 19 |
)
|
| 20 |
|
| 21 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id,token=token)
|
| 22 |
model = AutoModelForCausalLM.from_pretrained(
|
| 23 |
model_id,
|
| 24 |
torch_dtype=torch.bfloat16,
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
| 3 |
import torch
|
|
|
|
| 4 |
import os
|
| 5 |
|
| 6 |
+
# Check CUDA availability
|
| 7 |
print("CUDA available:", torch.cuda.is_available())
|
| 8 |
print("CUDA version:", torch.version.cuda)
|
| 9 |
|
| 10 |
+
# Load the Hugging Face token from secrets
|
| 11 |
token = os.environ.get("HF_TOKEN")
|
| 12 |
|
| 13 |
model_id = "google/shieldgemma-2b"
|
| 14 |
|
| 15 |
+
# Use quantization to lower GPU usage
|
| 16 |
bnb_config = BitsAndBytesConfig(
|
| 17 |
+
load_in_4bit=True,
|
| 18 |
+
bnb_4bit_use_double_quant=True,
|
| 19 |
+
bnb_4bit_quant_type="nf4",
|
| 20 |
+
bnb_4bit_compute_dtype=torch.bfloat16
|
| 21 |
)
|
| 22 |
|
| 23 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, token=token)
|
| 24 |
model = AutoModelForCausalLM.from_pretrained(
|
| 25 |
model_id,
|
| 26 |
torch_dtype=torch.bfloat16,
|