Spaces:
Runtime error
Runtime error
| # Copyright 2024 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from typing import Tuple, Union | |
| import torch | |
| import torch.nn.functional as F | |
| from torch import nn | |
| from diffusers.utils import logging | |
| from diffusers.models.normalization import RMSNorm | |
| try: | |
| # from .dcformer import DCMHAttention | |
| from .customer_attention_processor import Attention, CustomLiteLAProcessor2_0, CustomerAttnProcessor2_0 | |
| except ImportError: | |
| # from dcformer import DCMHAttention | |
| from customer_attention_processor import Attention, CustomLiteLAProcessor2_0, CustomerAttnProcessor2_0 | |
| logger = logging.get_logger(__name__) | |
| def val2list(x: list or tuple or any, repeat_time=1) -> list: # type: ignore | |
| """Repeat `val` for `repeat_time` times and return the list or val if list/tuple.""" | |
| if isinstance(x, (list, tuple)): | |
| return list(x) | |
| return [x for _ in range(repeat_time)] | |
| def val2tuple(x: list or tuple or any, min_len: int = 1, idx_repeat: int = -1) -> tuple: # type: ignore | |
| """Return tuple with min_len by repeating element at idx_repeat.""" | |
| # convert to list first | |
| x = val2list(x) | |
| # repeat elements if necessary | |
| if len(x) > 0: | |
| x[idx_repeat:idx_repeat] = [x[idx_repeat] for _ in range(min_len - len(x))] | |
| return tuple(x) | |
| def t2i_modulate(x, shift, scale): | |
| return x * (1 + scale) + shift | |
| def get_same_padding(kernel_size: Union[int, Tuple[int, ...]]) -> Union[int, Tuple[int, ...]]: | |
| if isinstance(kernel_size, tuple): | |
| return tuple([get_same_padding(ks) for ks in kernel_size]) | |
| else: | |
| assert kernel_size % 2 > 0, f"kernel size {kernel_size} should be odd number" | |
| return kernel_size // 2 | |
| class ConvLayer(nn.Module): | |
| def __init__( | |
| self, | |
| in_dim: int, | |
| out_dim: int, | |
| kernel_size=3, | |
| stride=1, | |
| dilation=1, | |
| groups=1, | |
| padding: Union[int, None] = None, | |
| use_bias=False, | |
| norm=None, | |
| act=None, | |
| ): | |
| super().__init__() | |
| if padding is None: | |
| padding = get_same_padding(kernel_size) | |
| padding *= dilation | |
| self.in_dim = in_dim | |
| self.out_dim = out_dim | |
| self.kernel_size = kernel_size | |
| self.stride = stride | |
| self.dilation = dilation | |
| self.groups = groups | |
| self.padding = padding | |
| self.use_bias = use_bias | |
| self.conv = nn.Conv1d( | |
| in_dim, | |
| out_dim, | |
| kernel_size=kernel_size, | |
| stride=stride, | |
| padding=padding, | |
| dilation=dilation, | |
| groups=groups, | |
| bias=use_bias, | |
| ) | |
| if norm is not None: | |
| self.norm = RMSNorm(out_dim, elementwise_affine=False) | |
| else: | |
| self.norm = None | |
| if act is not None: | |
| self.act = nn.SiLU(inplace=True) | |
| else: | |
| self.act = None | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| x = self.conv(x) | |
| if self.norm: | |
| x = self.norm(x) | |
| if self.act: | |
| x = self.act(x) | |
| return x | |
| class GLUMBConv(nn.Module): | |
| def __init__( | |
| self, | |
| in_features: int, | |
| hidden_features: int, | |
| out_feature=None, | |
| kernel_size=3, | |
| stride=1, | |
| padding: Union[int, None] = None, | |
| use_bias=False, | |
| norm=(None, None, None), | |
| act=("silu", "silu", None), | |
| dilation=1, | |
| ): | |
| out_feature = out_feature or in_features | |
| super().__init__() | |
| use_bias = val2tuple(use_bias, 3) | |
| norm = val2tuple(norm, 3) | |
| act = val2tuple(act, 3) | |
| self.glu_act = nn.SiLU(inplace=False) | |
| self.inverted_conv = ConvLayer( | |
| in_features, | |
| hidden_features * 2, | |
| 1, | |
| use_bias=use_bias[0], | |
| norm=norm[0], | |
| act=act[0], | |
| ) | |
| self.depth_conv = ConvLayer( | |
| hidden_features * 2, | |
| hidden_features * 2, | |
| kernel_size, | |
| stride=stride, | |
| groups=hidden_features * 2, | |
| padding=padding, | |
| use_bias=use_bias[1], | |
| norm=norm[1], | |
| act=None, | |
| dilation=dilation, | |
| ) | |
| self.point_conv = ConvLayer( | |
| hidden_features, | |
| out_feature, | |
| 1, | |
| use_bias=use_bias[2], | |
| norm=norm[2], | |
| act=act[2], | |
| ) | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| x = x.transpose(1, 2) | |
| x = self.inverted_conv(x) | |
| x = self.depth_conv(x) | |
| x, gate = torch.chunk(x, 2, dim=1) | |
| gate = self.glu_act(gate) | |
| x = x * gate | |
| x = self.point_conv(x) | |
| x = x.transpose(1, 2) | |
| return x | |
| class LinearTransformerBlock(nn.Module): | |
| """ | |
| A Sana block with global shared adaptive layer norm (adaLN-single) conditioning. | |
| """ | |
| def __init__( | |
| self, | |
| dim, | |
| num_attention_heads, | |
| attention_head_dim, | |
| use_adaln_single=True, | |
| cross_attention_dim=None, | |
| added_kv_proj_dim=None, | |
| context_pre_only=False, | |
| mlp_ratio=4.0, | |
| add_cross_attention=False, | |
| add_cross_attention_dim=None, | |
| qk_norm=None, | |
| ): | |
| super().__init__() | |
| self.norm1 = RMSNorm(dim, elementwise_affine=False, eps=1e-6) | |
| self.attn = Attention( | |
| query_dim=dim, | |
| cross_attention_dim=cross_attention_dim, | |
| added_kv_proj_dim=added_kv_proj_dim, | |
| dim_head=attention_head_dim, | |
| heads=num_attention_heads, | |
| out_dim=dim, | |
| bias=True, | |
| qk_norm=qk_norm, | |
| processor=CustomLiteLAProcessor2_0(), | |
| ) | |
| self.add_cross_attention = add_cross_attention | |
| self.context_pre_only = context_pre_only | |
| if add_cross_attention and add_cross_attention_dim is not None: | |
| self.cross_attn = Attention( | |
| query_dim=dim, | |
| cross_attention_dim=add_cross_attention_dim, | |
| added_kv_proj_dim=add_cross_attention_dim, | |
| dim_head=attention_head_dim, | |
| heads=num_attention_heads, | |
| out_dim=dim, | |
| context_pre_only=context_pre_only, | |
| bias=True, | |
| qk_norm=qk_norm, | |
| processor=CustomerAttnProcessor2_0(), | |
| ) | |
| self.norm2 = RMSNorm(dim, 1e-06, elementwise_affine=False) | |
| self.ff = GLUMBConv( | |
| in_features=dim, | |
| hidden_features=int(dim * mlp_ratio), | |
| use_bias=(True, True, False), | |
| norm=(None, None, None), | |
| act=("silu", "silu", None), | |
| ) | |
| self.use_adaln_single = use_adaln_single | |
| if use_adaln_single: | |
| self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5) | |
| def forward( | |
| self, | |
| hidden_states: torch.FloatTensor, | |
| encoder_hidden_states: torch.FloatTensor = None, | |
| attention_mask: torch.FloatTensor = None, | |
| encoder_attention_mask: torch.FloatTensor = None, | |
| rotary_freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]] = None, | |
| rotary_freqs_cis_cross: Union[torch.Tensor, Tuple[torch.Tensor]] = None, | |
| temb: torch.FloatTensor = None, | |
| ): | |
| N = hidden_states.shape[0] | |
| # step 1: AdaLN single | |
| if self.use_adaln_single: | |
| shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( | |
| self.scale_shift_table[None] + temb.reshape(N, 6, -1) | |
| ).chunk(6, dim=1) | |
| norm_hidden_states = self.norm1(hidden_states) | |
| if self.use_adaln_single: | |
| norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa | |
| # step 2: attention | |
| if not self.add_cross_attention: | |
| attn_output, encoder_hidden_states = self.attn( | |
| hidden_states=norm_hidden_states, | |
| attention_mask=attention_mask, | |
| encoder_hidden_states=encoder_hidden_states, | |
| encoder_attention_mask=encoder_attention_mask, | |
| rotary_freqs_cis=rotary_freqs_cis, | |
| rotary_freqs_cis_cross=rotary_freqs_cis_cross, | |
| ) | |
| else: | |
| attn_output, _ = self.attn( | |
| hidden_states=norm_hidden_states, | |
| attention_mask=attention_mask, | |
| encoder_hidden_states=None, | |
| encoder_attention_mask=None, | |
| rotary_freqs_cis=rotary_freqs_cis, | |
| rotary_freqs_cis_cross=None, | |
| ) | |
| if self.use_adaln_single: | |
| attn_output = gate_msa * attn_output | |
| hidden_states = attn_output + hidden_states | |
| if self.add_cross_attention: | |
| attn_output = self.cross_attn( | |
| hidden_states=hidden_states, | |
| attention_mask=attention_mask, | |
| encoder_hidden_states=encoder_hidden_states, | |
| encoder_attention_mask=encoder_attention_mask, | |
| rotary_freqs_cis=rotary_freqs_cis, | |
| rotary_freqs_cis_cross=rotary_freqs_cis_cross, | |
| ) | |
| hidden_states = attn_output + hidden_states | |
| # step 3: add norm | |
| norm_hidden_states = self.norm2(hidden_states) | |
| if self.use_adaln_single: | |
| norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp | |
| # step 4: feed forward | |
| ff_output = self.ff(norm_hidden_states) | |
| if self.use_adaln_single: | |
| ff_output = gate_mlp * ff_output | |
| hidden_states = hidden_states + ff_output | |
| return hidden_states | |