Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,507 Bytes
164603c 46cf002 164603c 26adaf1 46cf002 164603c e9bcb5a 164603c e9bcb5a 164603c e9bcb5a 164603c e9bcb5a 164603c e9bcb5a 164603c 52c0d1f 164603c 46cf002 164603c 52c0d1f 164603c 52c0d1f 164603c 46cf002 164603c 26adaf1 46cf002 164603c 46cf002 164603c 52c0d1f aa6abd6 52c0d1f 164603c 52c0d1f 164603c 46cf002 164603c 46cf002 d12d4e0 46cf002 d12d4e0 46cf002 d12d4e0 46cf002 164603c 46cf002 164603c 46cf002 164603c 46cf002 164603c 46cf002 164603c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
import os
import subprocess
import sys
# Fix OMP_NUM_THREADS issue before any imports
os.environ["OMP_NUM_THREADS"] = "4"
# Install dependencies programmatically to avoid conflicts
def setup_dependencies():
try:
# Check if already installed
if os.path.exists('/tmp/deps_installed'):
return
print("Installing transformers dev version...")
subprocess.check_call([
sys.executable, "-m", "pip", "install", "--force-reinstall", "--no-cache-dir",
"git+https://github.com/huggingface/transformers.git"
])
# Mark as installed
with open('/tmp/deps_installed', 'w') as f:
f.write('done')
except Exception as e:
print(f"Dependencies setup error: {e}")
# Run setup
setup_dependencies()
import spaces
import gradio as gr
from util import Config, NemoAudioPlayer, KaniModel, Demo
import numpy as np
import torch
# Get HuggingFace token
token_ = os.getenv('HF_TOKEN')
# Model configurations
models_configs = {
'Base_pretrained_model': Config(),
'Female_voice': Config(
model_name='nineninesix/lfm-nano-codec-expresso-ex02-v.0.2',
temperature=0.2
),
'Male_voice': Config(
model_name='nineninesix/lfm-nano-codec-expresso-ex01-v.0.1',
temperature=0.2
)
}
# Global variables for models (loaded once)
player = NemoAudioPlayer(Config())
demo_examples = Demo()()
models = {}
for model_name, config in models_configs.items():
print(f"Loading {model_name}...")
models[model_name] = KaniModel(config, player, token_)
print(f"{model_name} loaded!")
print("All models loaded!")
# def initialize_models():
# """Initialize models globally to avoid reloading"""
# global models
# # if player is None:
# # print("Initializing NeMo Audio Player...")
# # player = NemoAudioPlayer(Config())
# # print("NeMo Audio Player initialized!")
# if not models:
# print("Loading TTS models...")
# for model_name, config in models_configs.items():
# print(f"Loading {model_name}...")
# models[model_name] = KaniModel(config, player, token_)
# print(f"{model_name} loaded!")
# print("All models loaded!")
@spaces.GPU
def generate_speech_gpu(text, model_choice):
"""
Generate speech from text using the selected model on GPU
"""
# Initialize models if not already done
# initialize_models()
if not text.strip():
return None, "Please enter text for speech generation."
if not model_choice:
return None, "Please select a model."
try:
# Check GPU availability
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
# Get selected model
selected_model = models[model_choice]
# Generate audio
print(f"Generating speech with {model_choice}...")
audio, _, time_report = selected_model.run_model(text)
sample_rate = 22050
print("Speech generation completed!")
return (sample_rate, audio), time_report #, f"β
Audio generated successfully using {model_choice} on {device}"
except Exception as e:
print(f"Error during generation: {str(e)}")
return None, f"β Error during generation: {str(e)}"
# def validate_input(text, model_choice):
# """Quick validation without GPU"""
# if not text.strip():
# return "β οΈ Please enter text for speech generation."
# if not model_choice:
# return "β οΈ Please select a model."
# return f"β
Ready to generate with {model_choice}"
# Create Gradio interface
with gr.Blocks(title="KaniTTS - Text to Speech", theme=gr.themes.Default()) as demo:
gr.Markdown("# KaniTTS: Fast and Expressive Speech Generation Model")
gr.Markdown("Select a model and enter text to generate high-quality speech")
with gr.Row():
with gr.Column(scale=1):
model_dropdown = gr.Dropdown(
choices=list(models_configs.keys()),
value=list(models_configs.keys())[0],
label="Select Model",
info="Base - default model, Female - female voice, Male - male voice"
)
text_input = gr.Textbox(
label="Enter Text",
placeholder="Enter text for speech generation...",
lines=3,
max_lines=10
)
generate_btn = gr.Button("π΅ Generate Speech", variant="primary", size="lg")
# Quick validation button (CPU only)
# validate_btn = gr.Button("π Validate Input", variant="secondary")
with gr.Column(scale=1):
audio_output = gr.Audio(
label="Generated Speech",
type="numpy"
)
time_report_output = gr.Textbox(
label="Time Report",
interactive=False,
value="Ready to generate speech",
lines=3
)
# GPU generation event
generate_btn.click(
fn=generate_speech_gpu,
inputs=[text_input, model_dropdown],
outputs=[audio_output, time_report_output]
)
# Demo Examples
gr.Markdown("## π― Demo Examples")
def play_demo(text):
return (22050, demo_examples[text]), 'DEMO'
with gr.Row():
for text in list(demo_examples.keys())[:4]:
gr.Button(text).click(lambda t=text: play_demo(t), outputs=[audio_output, time_report_output])
with gr.Row():
for text in list(demo_examples.keys())[4:8]:
gr.Button(text).click(lambda t=text: play_demo(t), outputs=[audio_output, time_report_output])
# # CPU validation event
# validate_btn.click(
# fn=validate_input,
# inputs=[text_input, model_dropdown],
# outputs=status_text
# )
# # Update status on input change
# text_input.change(
# fn=validate_input,
# inputs=[text_input, model_dropdown],
# outputs=status_text
# )
# Text examples
# gr.Markdown("### π Text Examples:")
# examples = [
# "Hello! How are you today?",
# "Welcome to the world of artificial intelligence.",
# "This is a demonstration of neural text-to-speech synthesis.",
# "Zero GPU makes high-quality speech generation accessible to everyone!"
# ]
# gr.Examples(
# examples=examples,
# inputs=text_input,
# label="Click on an example to use it"
# )
# # Information section
# with gr.Accordion("βΉοΈ Model Information", open=False):
# gr.Markdown("""
# **Available Models:**
# - **Base Model**: Default pre-trained model for general use
# - **Female Voice**: Optimized for female voice characteristics
# - **Male Voice**: Optimized for male voice characteristics
# **Features:**
# - Powered by NVIDIA NeMo Toolkit
# - High-quality 22kHz audio output
# - Zero GPU acceleration for fast inference
# - Support for long text sequences
# """)
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True
) |