Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import os | |
| import re | |
| import json | |
| from datasets import load_dataset | |
| from transformers import AutoTokenizer, AutoModelForCausalLM, Trainer, TrainingArguments, pipeline | |
| from transformers import DataCollatorWithPadding | |
| from huggingface_hub import login | |
| # Retrieve the Hugging Face token from the Space secrets | |
| token = os.getenv("HF_TOKEN") | |
| # Log in using the token | |
| login(token=token) | |
| # Load the dataset | |
| dataset = load_dataset('json', data_files='dataset.json') | |
| # Tokenize the dataset | |
| # Step 6: Tokenize the dataset | |
| tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2", token=token) | |
| tokenizer.pad_token = tokenizer.eos_token # Set pad_token to eos_token | |
| # Tokenize the data and ensure labels are set | |
| def tokenize_function(examples): | |
| # Tokenize input text, adding labels for causal language modeling | |
| inputs = tokenizer(examples["text"], truncation=True, padding="max_length", max_length=256) | |
| # The labels are the input_ids shifted by one token (for causal language modeling) | |
| inputs["labels"] = inputs["input_ids"].copy() # Copy the input_ids for labels | |
| return inputs | |
| tokenized_datasets = dataset.map(tokenize_function, batched=True) | |
| # Data collator | |
| data_collator = DataCollatorWithPadding(tokenizer=tokenizer) | |
| # Split dataset into training and validation | |
| tokenized_datasets = tokenized_datasets['train'].train_test_split(test_size=0.1) | |
| train_dataset = tokenized_datasets["train"] | |
| eval_dataset = tokenized_datasets["test"] | |
| # Fine-tune the model | |
| model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2", token=token) | |
| training_args = TrainingArguments( | |
| output_dir="./results", | |
| eval_strategy="epoch", | |
| learning_rate=2e-5, | |
| per_device_train_batch_size=4, # Reduced batch size | |
| per_device_eval_batch_size=4, # Reduced batch size | |
| num_train_epochs=3, | |
| weight_decay=0.01, | |
| report_to="none", # Disables wandb logging | |
| fp16=True, # Enable mixed precision (use 16-bit instead of 32-bit precision) | |
| gradient_accumulation_steps=8, # Accumulate gradients over 8 steps | |
| ) | |
| trainer = Trainer( | |
| model=model, | |
| args=training_args, | |
| train_dataset=train_dataset, | |
| eval_dataset=eval_dataset, | |
| data_collator=data_collator | |
| ) | |
| trainer.train() | |
| # Save the model | |
| model.save_pretrained("./fine-tuned-gpt2") | |
| tokenizer.save_pretrained("./fine-tuned-gpt2") | |
| # Evaluate the model | |
| #results = trainer.evaluate() | |
| #print(results) | |
| # Create a Gradio interface for text generation | |
| def generate_text(prompt): | |
| inputs = tokenizer(prompt, return_tensors="pt") | |
| outputs = model.generate(inputs["input_ids"], max_length=50, num_return_sequences=1) | |
| return tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| iface = gr.Interface(fn=generate_text, inputs="text", outputs="text") | |
| iface.launch() |