Spaces:
Running
on
Zero
Running
on
Zero
Add KOSMOS-2.5 Document AI Demo
Browse files- Three interactive modes: Markdown generation, OCR with bounding boxes, and Document Q&A
- Support for both microsoft/kosmos-2.5 and microsoft/kosmos-2.5-chat models
- ZeroGPU integration with @spaces.GPU decorators
- Visual OCR with bounding box overlays
- Professional Gradio interface with tabbed layout
π€ Generated with [Claude Code](https://claude.ai/code)
Co-Authored-By: Claude <[email protected]>
- README.md +55 -7
- app.py +266 -0
- requirements.txt +6 -0
README.md
CHANGED
|
@@ -1,13 +1,61 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version:
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
-
|
| 11 |
---
|
| 12 |
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
title: KOSMOS-2.5 Document AI Demo
|
| 3 |
+
emoji: π
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: purple
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 4.44.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
+
license: mit
|
| 11 |
---
|
| 12 |
|
| 13 |
+
# KOSMOS-2.5 Document AI Demo
|
| 14 |
+
|
| 15 |
+
This Space demonstrates the capabilities of Microsoft's **KOSMOS-2.5**, a multimodal literate model for machine reading of text-intensive images.
|
| 16 |
+
|
| 17 |
+
## Features
|
| 18 |
+
|
| 19 |
+
π₯ **Three powerful modes**:
|
| 20 |
+
|
| 21 |
+
1. **π Markdown Generation**: Convert document images to clean markdown format
|
| 22 |
+
2. **π OCR with Bounding Boxes**: Extract text with precise spatial coordinates and visualization
|
| 23 |
+
3. **π¬ Document Q&A**: Ask questions about document content using KOSMOS-2.5 Chat
|
| 24 |
+
|
| 25 |
+
## What is KOSMOS-2.5?
|
| 26 |
+
|
| 27 |
+
KOSMOS-2.5 is Microsoft's latest document AI model that excels at understanding text-rich images. It can:
|
| 28 |
+
|
| 29 |
+
- Generate spatially-aware text blocks with coordinates
|
| 30 |
+
- Produce structured markdown output that captures document styles
|
| 31 |
+
- Answer questions about document content through the chat variant
|
| 32 |
+
|
| 33 |
+
The model was pre-trained on 357.4 million text-rich document images and achieves performance comparable to much larger models (1.3B vs 7B parameters) on visual question answering benchmarks.
|
| 34 |
+
|
| 35 |
+
## Example Use Cases
|
| 36 |
+
|
| 37 |
+
- **Receipts**: Extract itemized information or ask "What's the total amount?"
|
| 38 |
+
- **Forms**: Convert to structured format or query specific fields
|
| 39 |
+
- **Articles**: Get clean markdown or ask content-specific questions
|
| 40 |
+
- **Screenshots**: Extract UI text or get information about elements
|
| 41 |
+
|
| 42 |
+
## Model Information
|
| 43 |
+
|
| 44 |
+
- **Base Model**: [microsoft/kosmos-2.5](https://huggingface.co/microsoft/kosmos-2.5)
|
| 45 |
+
- **Chat Model**: [microsoft/kosmos-2.5-chat](https://huggingface.co/microsoft/kosmos-2.5-chat)
|
| 46 |
+
- **Paper**: [Kosmos-2.5: A Multimodal Literate Model](https://arxiv.org/abs/2309.11419)
|
| 47 |
+
|
| 48 |
+
## Note
|
| 49 |
+
|
| 50 |
+
This is a generative model and may occasionally produce inaccurate results. Please verify outputs for critical applications.
|
| 51 |
+
|
| 52 |
+
## Citation
|
| 53 |
+
|
| 54 |
+
```bibtex
|
| 55 |
+
@article{lv2023kosmos,
|
| 56 |
+
title={Kosmos-2.5: A multimodal literate model},
|
| 57 |
+
author={Lv, Tengchao and Huang, Yupan and Chen, Jingye and Cui, Lei and Ma, Shuming and Chang, Yaoyao and Huang, Shaohan and Wang, Wenhui and Dong, Li and Luo, Weiyao and others},
|
| 58 |
+
journal={arXiv preprint arXiv:2309.11419},
|
| 59 |
+
year={2023}
|
| 60 |
+
}
|
| 61 |
+
```
|
app.py
ADDED
|
@@ -0,0 +1,266 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import spaces
|
| 2 |
+
import torch
|
| 3 |
+
import gradio as gr
|
| 4 |
+
from PIL import Image
|
| 5 |
+
from transformers import AutoProcessor, Kosmos2_5ForConditionalGeneration
|
| 6 |
+
import re
|
| 7 |
+
|
| 8 |
+
# Check if CUDA is available
|
| 9 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 10 |
+
dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
# Initialize models and processors
|
| 14 |
+
@spaces.GPU
|
| 15 |
+
def load_models():
|
| 16 |
+
base_repo = "microsoft/kosmos-2.5"
|
| 17 |
+
chat_repo = "microsoft/kosmos-2.5-chat"
|
| 18 |
+
|
| 19 |
+
base_model = Kosmos2_5ForConditionalGeneration.from_pretrained(
|
| 20 |
+
base_repo,
|
| 21 |
+
device_map=device,
|
| 22 |
+
torch_dtype=dtype,
|
| 23 |
+
attn_implementation="flash_attention_2" if torch.cuda.is_available() else None
|
| 24 |
+
)
|
| 25 |
+
base_processor = AutoProcessor.from_pretrained(base_repo)
|
| 26 |
+
|
| 27 |
+
chat_model = Kosmos2_5ForConditionalGeneration.from_pretrained(
|
| 28 |
+
chat_repo,
|
| 29 |
+
device_map=device,
|
| 30 |
+
torch_dtype=dtype,
|
| 31 |
+
attn_implementation="flash_attention_2" if torch.cuda.is_available() else None
|
| 32 |
+
)
|
| 33 |
+
chat_processor = AutoProcessor.from_pretrained(chat_repo)
|
| 34 |
+
|
| 35 |
+
return base_model, base_processor, chat_model, chat_processor
|
| 36 |
+
|
| 37 |
+
base_model, base_processor, chat_model, chat_processor = load_models()
|
| 38 |
+
|
| 39 |
+
def post_process_ocr(y, scale_height, scale_width, prompt="<ocr>"):
|
| 40 |
+
y = y.replace(prompt, "")
|
| 41 |
+
if "<md>" in prompt:
|
| 42 |
+
return y
|
| 43 |
+
|
| 44 |
+
pattern = r"<bbox><x_\d+><y_\d+><x_\d+><y_\d+></bbox>"
|
| 45 |
+
bboxs_raw = re.findall(pattern, y)
|
| 46 |
+
lines = re.split(pattern, y)[1:]
|
| 47 |
+
bboxs = [re.findall(r"\d+", i) for i in bboxs_raw]
|
| 48 |
+
bboxs = [[int(j) for j in i] for i in bboxs]
|
| 49 |
+
|
| 50 |
+
info = ""
|
| 51 |
+
for i in range(len(lines)):
|
| 52 |
+
if i < len(bboxs):
|
| 53 |
+
box = bboxs[i]
|
| 54 |
+
x0, y0, x1, y1 = box
|
| 55 |
+
if not (x0 >= x1 or y0 >= y1):
|
| 56 |
+
x0 = int(x0 * scale_width)
|
| 57 |
+
y0 = int(y0 * scale_height)
|
| 58 |
+
x1 = int(x1 * scale_width)
|
| 59 |
+
y1 = int(y1 * scale_height)
|
| 60 |
+
info += f"{x0},{y0},{x1},{y0},{x1},{y1},{x0},{y1},{lines[i]}\n"
|
| 61 |
+
return info.strip()
|
| 62 |
+
|
| 63 |
+
@spaces.GPU
|
| 64 |
+
def generate_markdown(image):
|
| 65 |
+
if image is None:
|
| 66 |
+
return "Please upload an image."
|
| 67 |
+
|
| 68 |
+
prompt = "<md>"
|
| 69 |
+
inputs = base_processor(text=prompt, images=image, return_tensors="pt")
|
| 70 |
+
|
| 71 |
+
height, width = inputs.pop("height"), inputs.pop("width")
|
| 72 |
+
raw_width, raw_height = image.size
|
| 73 |
+
scale_height = raw_height / height
|
| 74 |
+
scale_width = raw_width / width
|
| 75 |
+
|
| 76 |
+
inputs = {k: v.to(device) if v is not None else None for k, v in inputs.items()}
|
| 77 |
+
inputs["flattened_patches"] = inputs["flattened_patches"].to(dtype)
|
| 78 |
+
|
| 79 |
+
with torch.no_grad():
|
| 80 |
+
generated_ids = base_model.generate(
|
| 81 |
+
**inputs,
|
| 82 |
+
max_new_tokens=1024,
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
generated_text = base_processor.batch_decode(generated_ids, skip_special_tokens=True)
|
| 86 |
+
result = generated_text[0].replace(prompt, "").strip()
|
| 87 |
+
|
| 88 |
+
return result
|
| 89 |
+
|
| 90 |
+
@spaces.GPU
|
| 91 |
+
def generate_ocr(image):
|
| 92 |
+
if image is None:
|
| 93 |
+
return "Please upload an image.", None
|
| 94 |
+
|
| 95 |
+
prompt = "<ocr>"
|
| 96 |
+
inputs = base_processor(text=prompt, images=image, return_tensors="pt")
|
| 97 |
+
|
| 98 |
+
height, width = inputs.pop("height"), inputs.pop("width")
|
| 99 |
+
raw_width, raw_height = image.size
|
| 100 |
+
scale_height = raw_height / height
|
| 101 |
+
scale_width = raw_width / width
|
| 102 |
+
|
| 103 |
+
inputs = {k: v.to(device) if v is not None else None for k, v in inputs.items()}
|
| 104 |
+
inputs["flattened_patches"] = inputs["flattened_patches"].to(dtype)
|
| 105 |
+
|
| 106 |
+
with torch.no_grad():
|
| 107 |
+
generated_ids = base_model.generate(
|
| 108 |
+
**inputs,
|
| 109 |
+
max_new_tokens=1024,
|
| 110 |
+
)
|
| 111 |
+
|
| 112 |
+
generated_text = base_processor.batch_decode(generated_ids, skip_special_tokens=True)
|
| 113 |
+
|
| 114 |
+
# Post-process OCR output
|
| 115 |
+
output_text = post_process_ocr(generated_text[0], scale_height, scale_width)
|
| 116 |
+
|
| 117 |
+
# Create visualization
|
| 118 |
+
from PIL import ImageDraw
|
| 119 |
+
vis_image = image.copy()
|
| 120 |
+
draw = ImageDraw.Draw(vis_image)
|
| 121 |
+
|
| 122 |
+
lines = output_text.split("\n")
|
| 123 |
+
for line in lines:
|
| 124 |
+
if not line.strip():
|
| 125 |
+
continue
|
| 126 |
+
parts = line.split(",")
|
| 127 |
+
if len(parts) >= 8:
|
| 128 |
+
try:
|
| 129 |
+
coords = list(map(int, parts[:8]))
|
| 130 |
+
draw.polygon(coords, outline="red", width=2)
|
| 131 |
+
except:
|
| 132 |
+
continue
|
| 133 |
+
|
| 134 |
+
return output_text, vis_image
|
| 135 |
+
|
| 136 |
+
@spaces.GPU
|
| 137 |
+
def generate_chat_response(image, question):
|
| 138 |
+
if image is None:
|
| 139 |
+
return "Please upload an image."
|
| 140 |
+
if not question.strip():
|
| 141 |
+
return "Please ask a question."
|
| 142 |
+
|
| 143 |
+
template = "<md>A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {} ASSISTANT:"
|
| 144 |
+
prompt = template.format(question)
|
| 145 |
+
|
| 146 |
+
inputs = chat_processor(text=prompt, images=image, return_tensors="pt")
|
| 147 |
+
|
| 148 |
+
height, width = inputs.pop("height"), inputs.pop("width")
|
| 149 |
+
raw_width, raw_height = image.size
|
| 150 |
+
scale_height = raw_height / height
|
| 151 |
+
scale_width = raw_width / width
|
| 152 |
+
|
| 153 |
+
inputs = {k: v.to(device) if v is not None else None for k, v in inputs.items()}
|
| 154 |
+
inputs["flattened_patches"] = inputs["flattened_patches"].to(dtype)
|
| 155 |
+
|
| 156 |
+
with torch.no_grad():
|
| 157 |
+
generated_ids = chat_model.generate(
|
| 158 |
+
**inputs,
|
| 159 |
+
max_new_tokens=1024,
|
| 160 |
+
)
|
| 161 |
+
|
| 162 |
+
generated_text = chat_processor.batch_decode(generated_ids, skip_special_tokens=True)
|
| 163 |
+
|
| 164 |
+
# Extract only the assistant's response
|
| 165 |
+
result = generated_text[0]
|
| 166 |
+
if "ASSISTANT:" in result:
|
| 167 |
+
result = result.split("ASSISTANT:")[-1].strip()
|
| 168 |
+
|
| 169 |
+
return result
|
| 170 |
+
|
| 171 |
+
# Create Gradio interface
|
| 172 |
+
with gr.Blocks(title="KOSMOS-2.5 Document AI Demo", theme=gr.themes.Soft()) as demo:
|
| 173 |
+
gr.Markdown("""
|
| 174 |
+
# KOSMOS-2.5 Document AI Demo
|
| 175 |
+
|
| 176 |
+
Explore Microsoft's KOSMOS-2.5, a multimodal model for reading text-intensive images!
|
| 177 |
+
This demo showcases three capabilities:
|
| 178 |
+
|
| 179 |
+
1. **Markdown Generation**: Convert document images to markdown format
|
| 180 |
+
2. **OCR with Bounding Boxes**: Extract text with spatial coordinates
|
| 181 |
+
3. **Document Q&A**: Ask questions about document content using KOSMOS-2.5 Chat
|
| 182 |
+
|
| 183 |
+
Upload a document image (receipt, form, article, etc.) and try different tasks!
|
| 184 |
+
""")
|
| 185 |
+
|
| 186 |
+
with gr.Tabs():
|
| 187 |
+
# Markdown Generation Tab
|
| 188 |
+
with gr.TabItem("π Markdown Generation"):
|
| 189 |
+
with gr.Row():
|
| 190 |
+
with gr.Column():
|
| 191 |
+
md_image = gr.Image(type="pil", label="Upload Document Image")
|
| 192 |
+
md_button = gr.Button("Generate Markdown", variant="primary")
|
| 193 |
+
with gr.Column():
|
| 194 |
+
md_output = gr.Textbox(
|
| 195 |
+
label="Generated Markdown",
|
| 196 |
+
lines=15,
|
| 197 |
+
max_lines=20,
|
| 198 |
+
show_copy_button=True
|
| 199 |
+
)
|
| 200 |
+
|
| 201 |
+
# OCR Tab
|
| 202 |
+
with gr.TabItem("π OCR with Bounding Boxes"):
|
| 203 |
+
with gr.Row():
|
| 204 |
+
with gr.Column():
|
| 205 |
+
ocr_image = gr.Image(type="pil", label="Upload Document Image")
|
| 206 |
+
ocr_button = gr.Button("Extract Text with Coordinates", variant="primary")
|
| 207 |
+
with gr.Column():
|
| 208 |
+
with gr.Row():
|
| 209 |
+
ocr_text = gr.Textbox(
|
| 210 |
+
label="Extracted Text with Coordinates",
|
| 211 |
+
lines=10,
|
| 212 |
+
show_copy_button=True
|
| 213 |
+
)
|
| 214 |
+
ocr_vis = gr.Image(label="Visualization (Red boxes show detected text)")
|
| 215 |
+
|
| 216 |
+
# Chat Tab
|
| 217 |
+
with gr.TabItem("π¬ Document Q&A (Chat)"):
|
| 218 |
+
with gr.Row():
|
| 219 |
+
with gr.Column():
|
| 220 |
+
chat_image = gr.Image(type="pil", label="Upload Document Image")
|
| 221 |
+
chat_question = gr.Textbox(
|
| 222 |
+
label="Ask a question about the document",
|
| 223 |
+
placeholder="e.g., What is the total amount on this receipt?",
|
| 224 |
+
lines=2
|
| 225 |
+
)
|
| 226 |
+
chat_button = gr.Button("Get Answer", variant="primary")
|
| 227 |
+
with gr.Column():
|
| 228 |
+
chat_output = gr.Textbox(
|
| 229 |
+
label="Answer",
|
| 230 |
+
lines=8,
|
| 231 |
+
show_copy_button=True
|
| 232 |
+
)
|
| 233 |
+
|
| 234 |
+
# Event handlers
|
| 235 |
+
md_button.click(
|
| 236 |
+
fn=generate_markdown,
|
| 237 |
+
inputs=[md_image],
|
| 238 |
+
outputs=[md_output]
|
| 239 |
+
)
|
| 240 |
+
|
| 241 |
+
ocr_button.click(
|
| 242 |
+
fn=generate_ocr,
|
| 243 |
+
inputs=[ocr_image],
|
| 244 |
+
outputs=[ocr_text, ocr_vis]
|
| 245 |
+
)
|
| 246 |
+
|
| 247 |
+
chat_button.click(
|
| 248 |
+
fn=generate_chat_response,
|
| 249 |
+
inputs=[chat_image, chat_question],
|
| 250 |
+
outputs=[chat_output]
|
| 251 |
+
)
|
| 252 |
+
|
| 253 |
+
# Examples section
|
| 254 |
+
gr.Markdown("""
|
| 255 |
+
## Example Use Cases:
|
| 256 |
+
- **Receipts**: Extract itemized information or ask about totals
|
| 257 |
+
- **Forms**: Convert to structured format or answer specific questions
|
| 258 |
+
- **Articles**: Get markdown format or ask about content
|
| 259 |
+
- **Screenshots**: Extract text or get information about specific elements
|
| 260 |
+
|
| 261 |
+
## Note:
|
| 262 |
+
This is a generative model and may occasionally hallucinate. Results should be verified for accuracy.
|
| 263 |
+
""")
|
| 264 |
+
|
| 265 |
+
if __name__ == "__main__":
|
| 266 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio==4.44.0
|
| 2 |
+
torch>=2.0.0
|
| 3 |
+
transformers>=4.56.0
|
| 4 |
+
pillow
|
| 5 |
+
requests
|
| 6 |
+
spaces
|