Spaces:
Runtime error
Runtime error
Update examples
Browse files
app.py
CHANGED
|
@@ -15,7 +15,10 @@ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
| 15 |
model.to(device)
|
| 16 |
|
| 17 |
# load image examples
|
| 18 |
-
urls = ['https://
|
|
|
|
|
|
|
|
|
|
| 19 |
for idx, url in enumerate(urls):
|
| 20 |
image = Image.open(requests.get(url, stream=True).raw)
|
| 21 |
image.save(f"image_{idx}.png")
|
|
@@ -42,7 +45,9 @@ def process_image(image):
|
|
| 42 |
samples_img = [np.reshape(np.rint(127.5 * (clusters[s] + 1.0)), [n_px, n_px, 3]).astype(np.uint8) for s in samples]
|
| 43 |
|
| 44 |
# stack images horizontally
|
| 45 |
-
|
|
|
|
|
|
|
| 46 |
|
| 47 |
# return as PIL Image
|
| 48 |
completion = Image.fromarray(result)
|
|
@@ -52,7 +57,7 @@ def process_image(image):
|
|
| 52 |
title = "Interactive demo: ImageGPT"
|
| 53 |
description = "Demo for OpenAI's ImageGPT: Generative Pretraining from Pixels. To use it, simply upload an image or use the example image below and click 'submit'. Results will show up in a few seconds."
|
| 54 |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2109.10282'>ImageGPT: Generative Pretraining from Pixels</a> | <a href='https://openai.com/blog/image-gpt/'>Official blog</a></p>"
|
| 55 |
-
examples =[
|
| 56 |
|
| 57 |
iface = gr.Interface(fn=process_image,
|
| 58 |
inputs=gr.inputs.Image(type="pil"),
|
|
|
|
| 15 |
model.to(device)
|
| 16 |
|
| 17 |
# load image examples
|
| 18 |
+
urls = ['https://avatars.githubusercontent.com/u/326577?v=4',
|
| 19 |
+
'https://upload.wikimedia.org/wikipedia/commons/thumb/6/6e/Football_%28soccer_ball%29.svg/1200px-Football_%28soccer_ball%29.svg.png'
|
| 20 |
+
'https://ichef.bbci.co.uk/news/976/cpsprodpb/12A9B/production/_111434467_gettyimages-1143489763.jpg',
|
| 21 |
+
]
|
| 22 |
for idx, url in enumerate(urls):
|
| 23 |
image = Image.open(requests.get(url, stream=True).raw)
|
| 24 |
image.save(f"image_{idx}.png")
|
|
|
|
| 45 |
samples_img = [np.reshape(np.rint(127.5 * (clusters[s] + 1.0)), [n_px, n_px, 3]).astype(np.uint8) for s in samples]
|
| 46 |
|
| 47 |
# stack images horizontally
|
| 48 |
+
row1 = np.hstack(samples_img[:4])
|
| 49 |
+
row2 = np.hstack(samples_img[4:])
|
| 50 |
+
result = np.vstack([row1, row2])
|
| 51 |
|
| 52 |
# return as PIL Image
|
| 53 |
completion = Image.fromarray(result)
|
|
|
|
| 57 |
title = "Interactive demo: ImageGPT"
|
| 58 |
description = "Demo for OpenAI's ImageGPT: Generative Pretraining from Pixels. To use it, simply upload an image or use the example image below and click 'submit'. Results will show up in a few seconds."
|
| 59 |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2109.10282'>ImageGPT: Generative Pretraining from Pixels</a> | <a href='https://openai.com/blog/image-gpt/'>Official blog</a></p>"
|
| 60 |
+
examples =[f"image_{idx}.png" for idx in range(len(urls))]
|
| 61 |
|
| 62 |
iface = gr.Interface(fn=process_image,
|
| 63 |
inputs=gr.inputs.Image(type="pil"),
|